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Abstract

In the recent years several commentators hinted at an increase of the correlation

between equity and commodity prices, and blamed investment in commodity-related

products for this. First, this paper investigates such claims by looking at various

measures of correlation. Next, we assess what are the implications of higher correla-

tions between oil and equity prices for asset allocation. We develop a time-varying

Bayesian Dynamic Conditional Correlation model for volatilities and correlations

and find that joint modelling commodity and equity prices produces more accurate

point and density forecasts, which lead to substantial benefits in portfolio alloca-

tion. This, however, comes at the price of higher portfolio volatility. Therefore, the

popular view that commodities are to be included in one’s portfolio as a hedging

device is not grounded.
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1 Introduction

The past decade has witnessed a broad-based surge in commodity prices, with oil a fron-

trunner. The upward trend in prices has been ascribed to booming demand at the global

level, but fluctuations around it have been substantial, especially after the onset of the

Great Recession. Investing in commodities has generated hefty returns and has become

increasingly popular, in spite of the high risks associated with this type of investment, due

to the inherent volatility of commodity prices. Indeed, most fund managers have started

advising their customers to devote a share of their portfolios to commodity-related prod-

ucts as part of long-term diversification strategy. This is often motivated by the fact that,

over the long run, commodities are believed to display low correlation with other asset

classes, most notably with equities (Gorton and Rouwenhorst [2006]).

At the same time, substantial inflows into commodity-related investment products

have led many commentators to speculate on whether commodities are increasingly be-

having as an asset class. The empirical evidence on a lasting impact of financial investment

on commodity prices is, at best, scant (see Fattouh et al. [2012] for a recent survey). In the

segment of commodities, however, financial investors may have less commodity-specific

knowledge and a different attitude compared to commercial players, and hence enter or

exit trades based on their overall perceptions of the macroeconomic situation rather than

market-specific factors.

If this is the case, it would suggest that commodity prices are increasingly influenced

by shocks coming from the demand side. This is a well-established fact in the literature on

oil, following the seminal work by Kilian [2009]. The fact that equity prices are also likely

to have been largely driven by shocks related to the global economic activity, especially

in the aftermath of the financial crisis, could then explain the increase in correlations.1

1Tang and Xiong [2010], on a similar note, report evidence of increased correlations between the
returns of commodities that are included in indexes tracked by investment funds.
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In this paper, we try to shed some light on these issues. If one looks at the most recent

years, commodity and equity prices appeared to be increasingly correlated, both being ap-

parently more sensitive to news concerning the global macroeconomic environment rather

than to idiosyncratic and market-specific shocks. We first provide a complete charac-

terization of this phenomenon, by computing correlations using different methodologies

and trying to identify relevant turning points. Our results suggest that correlations, after

having hovered around zero for more than a decade, have indeed increased markedly since

mid-2008.

The co-movements between commodity and equity prices have already been examined

in the literature: Gorton and Rouwenhorst [2006] report that commodity returns display

negative correlation with equity returns over a long sample, running from 1959 to 2004.

Büyüşahin et al. [2010] explore the correlations on the pre-crisis period, failing to find

evidence of significant changes. Using post-2008 data, Büyüşahin and Robe [2012] find

that correlations between equities and commodities increased amid greater participation

by speculators. Other papers focused more specifically on oil: Kilian and Park [2009]

report that the response of equity prices to oil price shocks depends on the nature of

the shocks; Cassassus and Higuera [2011] show that oil price changes are good predictors

of equity returns; Chang et al. [2011] report evidence of volatility spillovers between oil

and equity prices. To the best of our knowledge, no studies have examined yet the joint

predictability of commodity and equity prices, nor implications of such predictability for

asset allocation.

To investigate to what extent co-movements between commodity and equity prices

could be exploited to improve forecasts in either direction, we use constant parameter uni-

variate and bivariate models for commodity and equity prices, and derive a time-varying

Bayesian Dynamic Conditional Correlation (DCC) model (Della Corte et al. [2010]), which

can account for the changes in the relationship between commodity and equity prices ob-
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served after 2008. We conduct a density forecasting exercise and find that the DCC

provides statistically superior density forecasts compared to a plain random walk model.

We then assess the economic value of such forecasting gains by considering an asset-

allocation framework with commodities and equities. The use of a Bayesian estimation

framework allows us to explicitly account for the fact that higher order moments and the

full predictive densities of commodity and equity prices are uncertain and vary over time.

Neglecting this and just focusing on mean and variances estimated on a fixed sample can

lead to suboptimal allocation. The estimated predictive densities depend on the data

and the prior, and account for estimation risk in the portfolio allocation; see Kandel

and Stambaugh [1996], Barberis [2000], Avramov [2002], Cremers [2002], Kan and Zhou

[2007] and Jacquier and Polson [2012]. Ravazzolo et al. [2008], Guidolin and Na [2008]

and Pettenuzzo and Timmermann [2011] extend their analysis to account for instability

uncertainty. Della Corte et al. [2011] and Della Corte et al. [2010] assess the economic

value of volatility and correlation timing. We extend this literature by including in the

asset allocation problem a new asset class, i.e. commodities. Our results indicate that

using a time-varying joint model for commodity and equity prices leads to economic gains

relative to passive strategies, especially at times of large price swings. At the same time, an

investment strategy which also includes commodities in a portfolio produces substantially

higher volatility than portfolios which do not include them. For short investment horizons

this is evident for the whole sample and not only from September 2008 onwards, when

correlations between equities and commodities increase. This is at odds with the common

notion that commodities can serve as a hedge.

The remainder of the paper is organized as follows. Section 2 describes the data and

documents changes in correlation over our sample. Section 3 presents bivariate models for

commodity and equity prices and investigates their forecast accuracy. We then move to

apply these findings to active asset allocation strategies in Section 4; Section 5 concludes.
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2 Commodity and equity markets

The idea that commodity and equity prices should display a negative correlation can be

deducted from expressing equity prices as the discounted value of future dividends. If

prices of inputs in the production process (energy, metals, raw materials) increase, firms

will see their profits shrink, other things equal, and will therefore have less dividend to dis-

tribute.2 In a sense, however, this suggests that commodity prices are driven exogenously.

It is now widely acknowledged that this is not the case. Commodity price increases often

come on the back of buoyant demand due to booming economic activity (Kilian [2009]).

Therefore, the sign of the correlation becomes less clear-cut: both equity and commodity

prices could increase on positive news about the global macroeconomic outlook material-

ize. Over the past years, market commentators have indeed often pointed at commodity

and equity prices moving in the same direction as a consequence of more optimistic or

more pessimistic expectations about the global economy. Kilian and Vega [2011] investi-

gate formally the impact of various macroeconomic announcements on the oil price over

a sample running from 1983 to 2008, but do not find a systematic relationship.

In this section, we will gauge correlations between oil and equity returns using a num-

ber of different methods. To start with, we collected weekly returns generated by the

Morgan Stanley Capital International global equity index (MSCI) and the Standard &

Poor’s Goldman Sachs commodity index (SPGSCI), starting from January 1980 until De-

cember 2012, see Figure 1.3 Commodity prices are substantially more volatile as Figure 2

indicates. Figure 3 reports sample correlations computed on moving windows of different

length; this is indeed what most commentators refer to when discussing co-movements of

commodity and equity prices. It emerges clearly that correlations have been sometimes

positive and sometimes negative, but on average have hovered around zero. In the recent

2While this is likely to be the case for each individual firm, at the aggregate level things may be less
clear cut, since increases in input prices can be passed through customers.

3Data was obtained from Bloomberg.

5



episode, however, positive correlations appear to have been stronger and more persistent

compared to the past: it started with the bursting of the financial crisis in 2008, and al-

though correlations have recently declined, they are still positive. Using different windows

alters somewhat the size of correlation, but the pattern remains.

Instead of using rolling windows of different length, which spread the influence of

extreme episodes or periods of market turbulence over time, one can use model-based

approaches to estimating correlations. A popular approach is the Dynamic Conditional

Correlation (DCC) model proposed by Engle [2002]:

yt = Φ(L)yt−1 + vt

vt = H0.5
t εt, εt ∼ N(0, IN), Ht = DtRtDt

D2
t = diag{ωi}+ diag{κi}vt−1v

′
t−1 + diag{λi}D2

t−1, i = 1, ..., N

Qt = S(ıı
′ − A−B) + Aεt−1ε

′
t−1 +BQt−1

Rt = diag{Qt}−1Qtdiag{Qt}−1

(1)

where yt is a (N × 1) vector of dependent variables, S is the unconditional correlation

matrix of εt, A, B and S(ıı
′ − A − B) are positive semidefinite matrices; see Appendix

for model details. In a nutshell, the DCC is a multivariate GARCH model in which

correlations are time-varying according to an autoregressive specification. As such, the

DCC accounts for both the time-varying features of volatilities and correlations.

The dynamic conditional correlations are reported in Figure 4. Although correlations

appear to be smaller compared to those estimated using rolling windows, they still look

persistently positive towards the end of the sample, in line with the findings of Büyüşahin

and Robe [2012].4

4The dynamics of the USD exchange rate could alter the correlation pattern, since non-US equities in
the MSCI index are priced in US dollars. To control for this, we repeated our analysis with the S&P500
index in place of the MSCI index. The results in terms of correlation (see Figure 8 in the appendix),
statistical predictability and economic gains (available upon request) are similar to those discussed in the
remainder of the paper.
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Since visual inspection reveals a persistent increase in correlation towards the end

of the sample, we formally tested for a breakpoint in the correlation pattern using the

methodology proposed by Andrews [1993] and Andrews and Ploberger [1994]. The re-

sults of the test point to a significant breakpoint on 5 September 2008, just before the

bankruptcy of Lehmann Bros.5 Interestingly, the same breakdate is found on window-

based and model-based correlations.

Again, this comes at no surprise if one takes into account that, in the downturn and the

subsequent economic recovery, both commodity and equity prices are likely to have been

driven by the same common shocks, i.e. news on the shape of the global macroeconomic

outlook.

3 Joint forecasts of commodity and equity prices

The debate on the predictability of equity prices is still an open issue in empirical re-

search, see for example Welch and Goyal [2008]. Market efficiency theories imply not

predictability, whether market friction theories imply predictability. Evidence of pre-

dictability of oil prices has, on contrary, been subject to a break in recent years: from the

mid-90’s, research evidence suggests not predictability where future prices contain all the

relevant information and alternative models cannot improve forecast accuracy. However,

very recent studies such as Baumeister and Kilian [2012] find that several (Bayesian)

reduced-form Vector Autoregressive models outperform forecasts based on future prices

in a real-time setting. Baumeister and Kilian’s models apply macroeconomic data to fore-

cast oil prices, but they do not explore the linkage with equity prices. Furthermore, their

analysis refers mainly to point forecasting. Kandel and Stambaugh [1996] and Barberis

5The test was conducted using the average, sup and LM statistics, with the p-values tabulated by
Hansen [1997]. All test statistics are significant at the 1% level. As recommended, we cut off the first
and last 10% of the observations.
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[2000], among others, discuss the role of parameter uncertainty and Bayesian analysis as

tool to cope with for return predictability and for asset allocation.

We produce weekly point and density forecasts for commodity and equity returns over

the sample from 2005W1 to 2012W52 for a total of 417 weeks. We compute h = 1, 2, ..., 24

steps ahead forecast for each vintage using a bivariate Bayesian Vector Autoregressive

model with Minnesota type prior (VAR), see Clark and Ravazzolo [2012] for details, and

a bivariate Bayesian DCC model.6 The main advantage of density forecasting over a plain

point forecast is that it can take into account higher moments, which are key ingredients

for the asset allocation exercise and can lead to substantial economic gains.

We compare these forecasts to a random walk (RW), i.e. the point forecast is taken

to be today’s price and the predicted volatility is the sample standard deviation, as well

as a Bayesian autoregressive model (AR). Bayesian inference on the listed models allows

to derive complete predictive densities, whose statistical accuracy is evaluated in the

forecasting exercise. More specifically, we consider several evaluation statistics for point

and density forecasts previously proposed in the literature, see Billio et al. [2012] for a

recent application. We evaluate commodity and equity forecasts separately in this section,

and use marginal densities from bivariate models.

We compare point forecasts in terms of Mean Square Prediction Errors (MSPE)

MSPEk =
1

t∗

t∑
t=t

e2k,t+1,

where t∗ = t− t+ 1 and e2k,t+1 is the square prediction error of model k. We evaluate

the predictive densities using two relative measures. First, we consider a Kullback-Leibler

Information Criterion (KLIC) based measure; see for example Kitamura [2002], Mitchell

and Hall [2005], Hall and Mitchell [2007], Amisano and Giacomini [2007], Kascha and

6Further details on the model and the estimation algorithm are reported in the appendix. Della Corte
et al. [2010] present an application to assess the economic value of time-varying correlation timing.
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Ravazzolo [2010]. The KLIC distance between the true density p(yt+1|y1:t) of a random

variable yt+1 and some candidate density p(ỹk,t+1|y1:t) obtained from model k is defined

as

KLICk,t+1 =

∫
p(yt+1|y1:t) ln

p(yt+1|y1:t)
p(ỹk,t+1|y1:t)

dyt+1,

= Et[ln p(yt+1|y1:t)− ln p(ỹk,t+1|y1:t))]. (2)

where Et(·) = E(·|Ft) is the conditional expectation given information set Ft at time

t. An estimate can be obtained from the average of the sample information, yt+1, . . . , yt+1,

on p(yt+1|y1:t) and p(ỹk,t+1|y1:t):

KLICk+1 =
1

t∗

t∑
t=t

[ln p(yt+1|y1:t)− ln p(ỹk,t+1|y1:t)]. (3)

The KLIC chooses the model which on average gives higher probability to events that

have actually occurred. In reality we do not know the true density, but for the comparison

of two competing models, it is sufficient to consider the Logarithmic Score (LS), which

corresponds to the latter term in the above sum,

LSk = − 1

t∗

t∑
t=t

ln p(ỹk,t+1|y1:t), (4)

for all k and to choose the model for which the expression in (4) is minimal, or as we

report in our tables, the opposite of the expression in (4) is maximal.

Since the distribution properties of a statistical test to compare density accuracy

performances, measured in terms of LS, are not derived when working with nested models
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and expanding estimation windows, as is our case, we follow Groen et al. [2012] and test

the null of equal finite sample forecast accuracy, against the alternative that a model

outperformed the RW benchmark using the Harvey et al. [1997] small sample correction

of the Diebold and Mariano [1995] and West [1996] statistic to standard normal critical

values.7 Following evidence in Clark and McCracken [2012] for point forecasting, we apply

the same test to investigate superiority in square prediction errors.

Table 1 reports point and density forecast results. Absolute predictability for commod-

ity returns is substantially lower than absolute predictability for equity returns: MSPEs

are higher and LS lower for all horizons. Data characteristics discussed in section 2 can

explain the result. However, the evidence is somewhat different for relative predictability

and point toward density forecasting. The models produce very similar point forecasts;

but the DCC model gives the highest LS for all the horizons in forecasting commodities,

but not in forecasting equity returns. Therefore, equities seem to contain relevant infor-

mation to forecast commodities, whether the opposite is not supported by our analysis.

Ferraro et al. [2012] find opposite evidence when investigating exchange rate and oil price

predictability: oil prices forecast exchange rates, but exchange rates do not forecast oil

prices. However, reported improvements are often very small.

Moreover, the DCC model gives more accurate forecasts relative to the RW bench-

mark for all the horizons up to 24 weeks and improvements in density forecasting are

always statistically significant. So, a time-varying covariance matrix which can model

instability in volatility and correlations between the two variables, as discussed in Section

2 is an important ingredient to predict higher moments of the joint commodity and equity

predictive density. Figure 5 indicates that most of the gains are in September 2008; but

for several horizons gains persist also in the aftermath of the Lehman bankrupcy.

7Given that we maximise the LS, we use right-tail p-values for the LS test.
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4 Asset allocation exercise

How should an investor read the results reported in the last two sections? On one hand,

the finding that correlation has become positive in the aftermath of the crisis may suggest

that commodities can no longer work as a hedge in one’s portfolio. On the other hand,

the fact that commodity returns are predicted by equity returns may bring benefits if one

follows a dynamic asset allocation strategy.

To answer these questions, we need to investigate the economic value of jointly mod-

elling commodities and equities in the setting of an investment strategy which allows both

assets to be included in one’s portfolio. To this end, we develop an active short-term in-

vestment exercise. The investor’s portfolio consists of the equity index, the commodity

index and risk free bonds only.8

At the end of each week t, the investor decides upon the fraction αs,t+h of her portfolio

to be held in stocks, αc,t+h in the commodity index and the remaining part in the risk

free asset for the period t + h, based on the forecast of the commodity and stock index

returns. We constrain αs,t+h, αc,t+h not allowing for short-sales or leveraging (see Barberis

[2000]) and to have at least 50% of the invested portfolio in risky asset. We assume that

the investor maximizes a power utility function:

u(Rt+h) =
R1−γ
t+h

1− γ
, γ > 1, (5)

where γ is the coefficient of relative risk aversion and Rt+h is the wealth at time t+h,

which is equal to

Rt+h = Rt ((1− αs,t+h − αc,t+h) exp(yf,t+h) + αt+h exp(yf,t+h + ỹt+h)), (6)

8The risk free asset is approximated by using the weekly federal funds rate; data was obtained from
the Fred database at the Federal Reserve Bank of St Louis.
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where Rt denotes initial wealth, αt+h = (αs,t+h, αc,t+h), yf,t+h the h-step ahead risk

free rate and ỹt+h the h-step ahead bivariate forecast of the commodity and stock index

returns in excess of the risk free made at time t. Our investor does not rebalance the

portfolios in the period from t to t+ h, but keeps positions on the three assets constant.9

When the initial wealth is set equal to one, i.e. R0 = 1, the investor solves the following

problem:

max
αt+h∈[0,1]2

∑
αt+h≤1

Et
(

((1− αs,t+h − αc,t+h) exp(yf,t+h) + αt+h exp(yf,t+h + ỹt+h))
1−γ

1− γ

)
.

The expectation Et(·) depends on the predictive density for the commodity and stock

excess returns, p(ỹt+h|y1:t) and the problem can be rewritten as:

max
αt+h∈[0,1]2

∑
αt+h≤1

∫
u(Rt+h)p(ỹt+h|y1:t)dỹt+h. (7)

We approximate the integral in (7) by generating G independent draws from the

predictive density p(ỹt+h|y1:t), ỹgt+h, and then use a numerical optimization method to

find:

max
αt+h∈[0,1]

1

G

G∑
g=1

(
((1− αt+h) exp(yf,t+h) + αt+h exp(yf,t+h + ỹgt+h))

1−γ

1− γ

)
. (8)

We consider an investor who can choose between different forecast densities of the

(excess) commodity and equity returns yt+h to solve the optimal allocation problem de-

scribed above. We include three cases in the empirical analysis below and assume the

investor uses alternatively the density from the RW and AR univariate models for each

9In the case of dynamic asset allocation the long-run investor is allowed to rebalance her portfolio dur-
ing the investment period, adjusting the portfolio weights to reflect new information that arrives. Solving
the resulting dynamic programming problem is complicated due to the large number of state variables
that enter the problem in a highly nonlinear way, see Barberis [2000] and Guidolin and Timmermann
[2007].

12



series, the bivariate BVAR and the bivariate BVAR-DCC. Moreover, since the portfolio

weights in the active investment strategies change every period, we include transaction

costs of c = 0.05%, i.e. 5 basis points.

We evaluate the different investment strategies for an investor with a risk aversion

parameter γ = 5, as in Barberis [2000], by computing the ex post annualized mean

portfolio return, the annualized standard deviation and the Sharpe ratio.10 We compare

the wealth provided at time t + h by two resulting portfolios by determining the value

of multiplication factor of wealth ∆ which equates their average utilities. For example,

suppose we compare two strategies A and B.

t∑
t=t

u(RA,t+h) =
t∑
t=t

u(RB,t+h/ exp(r)), (9)

where u(RA,t+h) and u(RB,t+h) are the wealth provided at time T + h by the two

resulting portfolios A and B, respectively. Following West et al. [1993], we interpret ∆ as

the maximum performance fee the investor would be willing to pay to switch from strategy

A to strategy B.11 We infer the value added of strategies based on individual models

and the combination scheme by computing ∆ with respect to three static benchmark

strategies: holding only stock (∆s), holding only commodities (∆c), and holding 70% in

equities and 30% in commodities (∆70/30).

Finally we compute the certainty equivalent return (CER) for each strategy, in formula:

CERt+h = u−1(Et(u(Rt+h))), (10)

where u1− is the inverse of the power utility function defined in (5). Strategy with

maximum CER is preferred. We do not report the final value as for other alternative

measures, but plot how cumulative difference between any strategy A and investing 100%

10Results are qualitatively similar for γ = 2, . . . , 6.
11See, for example, Fleming et al. [2001] for an application with stock returns.
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of the portfolio in the stock market:

CERDk,t+1 =
t∑
s=t

(CERA,t+h − CERs,t+h), (11)

where k = RW, AR, ..., FRR. If CERDk,t+h increases at observation t + h, this

indicates that the strategy k gives higher CER than the benchmark strategy.

Results in Table 2 strengthen the evidence reported in the section on point and density

forecasting. The VAR and DCC models give higher SR than the RW and have positive

‘entrance fees’ relative to passive strategies for all the horizons. Gains are robust to

reasonable transaction costs. The DCC provides the highest gains for horizons longer

than two and up to eight weeks. Gains are substantial compared to alternative models

for 2- and 4-weeks horizons.

So, a joint modelling of commodity and equity returns with time-varying volatility can

produce statistically and economically significant gains. To shed light how such gains are

made, Figure 5 plots the CER differential relative to a passive strategy of investing 100%

of the portfolio in stock prices over the sample period for a two weeks horizons. For all the

six investment horizons we consider, the gains arise mainly in the second part of 2008, i.e.

during the most turbulent time of the recent financial crisis, when equity and commodity

prices are likely to have been driven by the same common shocks. However, the whole

period from the beginning of the Great Financial Crisis from August 2007 to the end of

the sample shows that the active strategies lead to economic gains. Those yielded by the

DCC are marginally higher compared to RW models and substantially higher than AR

and VAR models.

We now turn to the question of what are the relative advantages of a portfolio including

commodities in addition to equities and a risk-free asset. To answer this, we compare the

results of Table 2 with those coming from a similar portfolio allocation exercise, in which

the weight associated to commodities is set to zero. Results, reported in Table 3, suggest
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that the inclusion of commodities in one’s portfolio has boosted returns when using a

DCC model, in particular for horizons of 2 to 4 weeks. However, this comes at the price

of a substantially higher volatility, irrespective of the model used. Therefore, the common

lore that commodities should serve as a hedge does not seem to be solidly grounded. We

compare the realized 1-year moving window standard deviation of the portfolio based

on DCC forecasts which actively invests in both stock and commodity indexes and the

risk free to an active portfolio that invests only on stock and risk free using a forecast

from the RW model (since it produced more accurate predictions that the AR model).

Figure 7 shows that the large increase in the volatility of the stock/commodity portfolio is

attained in September 2008. Nevertheless, for horizons shorter than 8 weeks this portfolio

has higher volatility than the portfolio without commodities for the whole sample.

5 Concluding remarks

This paper has shown that the correlation between commodity and equity returns has

substantially increased after the onset of the recent financial crisis. We have then inves-

tigated the joint predictability of commodity and equity returns, and its benefits in a

dynamic asset allocation exercise. Relative to a benchmark random-walk model, a bivari-

ate Bayesian DCC model, which can account for time variation in the correlation pattern,

produces statistically more accurate density forecasts and gives large economic gains in

an asset allocation exercise. The value of an active strategy based on DCC forecasts is

large compared to passive strategies during turbulent times. At the same time, an in-

vestment strategy which also includes commodities in a portfolio produces substantially

higher volatility and not always produces higher Sharpe ratios. This is at odds with the

common notion that commodities serve as a hedge.

Private and institutional investors have displayed an increasing appetite for commodi-

15



ties over the past years. Our findings have far-fetching policy implications in this respect.

On one side, our results provide empirical support for the inclusion of commodities in

a portfolio. At the same time, however, we have also found that this comes at the cost

of an increase in volatility. Therefore, the growing appetite for commodities is likely to

produce more volatile portfolios. Digging further into the financial stability implications

of the increasing correlation of commodity and equity returns is a relevant subject for

future research.
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Appendix A

DCC: a Bayesian estimation algorithm

The DCC model for the (N × 1) vector yt is formulated as:

yt = Φ(L)yt−1 + vt

vt = H0.5
t εt, εt ∼ N(0, IN), Ht = DtRtDt

D2
t = diag{ωi}+ diag{κi}vt−1v

′
t−1 + diag{λi}D2

t−1, i = 1, ..., N

Qt = S(ıı
′ − A−B) + Aεt−1ε

′
t−1 +BQt−1

Rt = diag{Qt}−1Qtdiag{Qt}−1

(12)

where S is the unconditional correlation matrix of εt, A, B and S(ıı
′−A−B) are positive

semidefinite matrices. In our exercise N = 2, therefore the parameters A and B reduce

to scalar and above conditions to A > 0, B > 0, A + B < 1. Following Engle [2002], the

log likelihood can be expressed as:

lnL = −1

2

T∑
t=1

(N ln(2π) + 2 ln |Dt|+ v
′

tD
−1
t D−1t vt − εtε

′

t + ln |Rt|+ ε
′

t−1R
−1
t εt−1) (13)

We estimate the DCC model using a Metropolis-Hastings algorithm. Define the vector

αi = (Φ0, ...,ΦL, ωi, κi, λi, A,B)
′
, with Φ(L) = (Φ0, ...,ΦL), i = 1, .., N , and αj the j-th

element of it. The sampling scheme consists of the following iterative steps.

Step 1: At iteration s, generate a point α∗j from the random walk kernel

α∗j = αi−1j + εj, ε ∼ N(0, Q), (14)

where Q is a diagonal matrix and σ2
j is its j-th diagonal element, and αs−1j is the (s −

1)th iterate of αj. Therefore, we draw row elements of Φ0, ...,ΦL and ωi, κi, λi, A,B
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independently. Then accept α∗j as αsj with probability p = min
[
1, f(α∗j )/f(αs−1j )

]
, where

f() is the likelihood of model (12) times priors. Otherwise, set α∗j = αs−1j . The elements

of Q are tuned by monitoring the acceptance rate to lie between 25% and 50%.

Step 2: After M iterations, we apply the following independent kernel MH algorithm.

Generate α∗j from

α∗j = µi−1αj
+ εj, ε ∼ N(0, Qαj

), (15)

where µαj
and Qαj

are, respectively, the sample mean and the sample covariance of the

first M iterates for αj. Then accept α∗j as αij with probability

p = min

[
1,
f(α∗j )g(αs−1j )

f(αs−1j )g(α∗j )

]
, (16)

where g() is a Gaussian proposal density (15).

Priors

We set normal priors for Φ(L) with mean and variance equal to OLS estimates. The

priors for ωi, κi, λi, A,B are uniform distributed and satisfy the restrictions ωi > 0, κi >

0, λi >, κi + λi < 1, A > 0, B > 0, A + B < 1. We note that different priors for the

coefficients A and B of the correlation matrix should be considered if the dimension of

the model is larger than two, see discussion in Tokuda et al. [2012].
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Table 1: Forecast accuracy for commodity and equity returns

Commodity index
h=1 h=2 h=4

RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC
MSPE 12.864 13.002 12.965 12.978 12.890 12.991 12.836 12.980 12.944 13.048 13.165 13.184

LS -3.351 -3.341 -3.220 -2.669∗ -3.300 -3.495 -3.279 -2.766∗ -3.259 -3.567 -3.315 -2.645∗

h=8 h=12 h=24
RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC

MSPE 12.988 13.003 12.899 12.922 13.028 13.063 13.196 13.149 12.905 12.968 12.950 12.957
LS -3.269 -3.383 -3.398 -2.661∗ -3.266 -3.479 -3.593 -2.880∗ -3.263 -3.699 -3.734 -2.972∗

Equity index
h=1 h=2 h=4

RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC
MSPE 8.081 8.256 8.536 8.515 8.088 8.116 8.345 8.355 12.905 12.968 12.950 12.968

LS -3.573 -3.991 -4.124 -4.432 -3.522 -4.174 -4.206 -4.095 -3.263 -3.699 -3.734 -3.239
h=8 h=12 h=24

RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC
MSPE 8.201 8.191 8.294 8.348 8.280 8.251 8.274 8.267 8.454 8.437 8.426 8.478

LS -3.560 -3.976 -4.316 -4.181 -3.666 -4.319 -4.301 -4.003 -3.473 -4.347 -4.397 -4.275

Notes: RW , AR, V AR, DCC denote models as defined in Section 3; MSPE is the Mean Square Prediction

Error; LS is the average Logarithmic Score. Lower MSPE and higher LS imply more accurate forecasts.

One ∗ represent rejections of the null hypothesis of equal predictability following the Harvey et al. [1997]

type of test at 10%.
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Table 2: Economic value of portfolios with commodities

No transaction costs
h=1 h=2 h=4

RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC
Mean Ret 4.33 2.78 2.82 2.05 2.95 2.98 2.69 4.09 2.48 2.61 2.96 3.30
St dev 16.61 15.87 16.43 16.51 16.75 16.71 17.07 16.43 17.39 17.36 17.57 17.73
SR 0.15 0.05 0.05 0.01 0.06 0.06 0.04 0.13 0.03 0.04 0.06 0.08
∆ s 94.90 78.84 70.90 58.10 90.07 90.52 77.03 116.03 110.25 106.63 103.65 110.79
∆ c 60.25 44.18 36.24 23.45 36.02 36.46 22.97 61.97 109.74 106.12 103.13 110.27
∆ 70− 30 50.02 33.95 26.01 13.22 28.83 29.28 15.79 54.79 42.08 38.46 35.47 42.61

h=8 h=12 h=24
RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC

Mean Ret 4.63 3.55 5.29 5.24 3.05 0.33 1.81 2.54 3.49 0.96 2.15 2.37
St dev 22.12 23.05 22.89 22.87 18.03 20.60 18.90 19.36 19.35 20.77 18.02 19.82
SR 0.12 0.07 0.15 0.16 0.06 -0.08 -0.01 0.03 0.08 -0.06 0.01 0.02
∆ s 101.14 15.62 103.73 104.39 317.98 -106.26 86.98 107.12 680.53 158.93 500.64 362.04
∆ c 87.11 0.59 88.70 89.36 920.78 496.55 689.79 709.93 2440.69 1919.08 2260.79 2122.20
∆ 70− 30 26.45 -61.07 27.04 27.70 353.53 -70.71 122.53 142.67 910.50 388.90 730.61 592.01

5 bp transaction costs
h=1 h=2 h=4

RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC
Mean Ret 2.68 1.19 2.41 2.87 2.39 2.19 1.93 3.36 2.27 2.35 2.74 3.04
St dev 17.61 19.18 18.37 18.74 16.76 16.71 17.08 16.43 17.39 17.36 17.57 17.72
SR 0.04 -0.04 0.02 0.05 0.03 0.01 0.00 0.09 0.02 0.02 0.05 0.06
∆ s 221.04 23.96 111.36 120.01 78.57 74.53 61.45 101.06 103.29 99.24 97.29 103.39
∆ c 379.60 182.52 269.93 278.58 24.52 36.46 7.40 47.00 102.77 101.12 96.77 102.87
∆ 70− 30 168.94 -28.13 59.27 67.92 17.33 13.29 0.21 39.82 35.11 31.07 29.11 35.21

h=8 h=12 h=24
RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC

Mean Ret 2.60 1.09 2.32 2.74 3.01 0.27 1.76 2.45 3.48 0.94 2.13 2.33
St dev 17.61 19.18 18.37 18.73 18.03 20.59 18.90 19.35 19.35 20.77 18.02 19.82
SR 0.04 -0.05 0.02 0.04 0.06 -0.09 -0.01 0.02 0.08 -0.06 0.00 0.01
∆ s 217.91 20.11 107.75 115.10 316.00 -109.00 84.16 102.99 679.46 157.47 499.03 359.16
∆ c 376.47 182.52 266.32 273.66 918.81 496.55 686.97 705.80 2439.61 1919.08 2259.18 2119.32
∆ 70− 30 165.81 -31.98 55.66 63.01 351.55 -73.45 119.71 138.54 909.43 387.44 729.00 589.13

Note: WN , AR, V AR, DCC denote individual models defined in Section 3; Mean Ret is the annualized

mean portfolio return; St dev is the annualized standard deviation; SR is the Sharpe ratio. ∆s, ∆o, ∆f

are the performance fees for switching from an active strategy to passive strategies holding only stock

(rs), only commodity (rc), and the 70/30 passive strategy (rm).
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Table 3: Economic value of portfolios without commodities

h=1 h=2 h=4
RW AR RW AR RW AR

Mean Ret 2.92 0.83 2.87 1.18 2.90 1.68
St dev 10.31 14.43 10.07 14.79 10.24 14.73
SR 0.10 -0.08 0.09 -0.05 0.08 -0.02

h=8 h=12 h=24
RW AR RW AR RW AR

Mean Ret 2.80 1.51 2.78 1.56 2.88 2.75
St dev 10.51 14.77 10.67 13.70 11.73 12.05
SR 0.08 -0.03 0.07 -0.03 0.07 0.06

Note: WN , AR: denote individual models defined in Section 3; Mean Ret is the annualized mean portfolio

return; St dev is the annualized standard deviation; SR is the Sharpe ratio.

25



F
ig

u
re

1:
C

o
m

m
o
d
it

y
a
n
d

e
q
u
it

y
re

tu
rn

s

-1
2

-1
0-8-6-4-202468

11.01.1980

11.01.1982

11.01.1984

11.01.1986

11.01.1988

11.01.1990

11.01.1992

11.01.1994

11.01.1996

11.01.1998

11.01.2000

11.01.2002

11.01.2004

11.01.2006

11.01.2008

11.01.2010

11.01.2012

M
X
W
O

SP
G
C
C
I

-0
,8

-0
,6

-0
,4

-0
,20

0
,2

0
,4

0
,6

11.01.1980

11.01.1982

11.01.1984

11.01.1986

11.01.1988

11.01.1990

11.01.1992

11.01.1994

11.01.1996

11.01.1998

11.01.2000

11.01.2002

11.01.2004

11.01.2006

11.01.2008

11.01.2010

11.01.2012

M
X
W
O

SP
G
C
C
I

N
o
te

:
W

ee
k
ly

re
tu

rn
s

of
co

m
m

o
d

it
y

an
d

eq
u

it
y

in
d

ex
es

(l
ef

t
p

an
el

)
an

d
av

er
ag

e
re

tu
rn

s
ov

er
a

1-
ye

ar
m

ov
in

g
w

in
d

ow
(r

ig
h
t

p
an

el
).

26



Figure 2: Commodity and equity volatilities

0

0,5

1

1,5

2

2,5

3

1
1
.0
1
.1
9
8
0

1
1
.0
1
.1
9
8
2

1
1
.0
1
.1
9
8
4

1
1
.0
1
.1
9
8
6

1
1
.0
1
.1
9
8
8

1
1
.0
1
.1
9
9
0

1
1
.0
1
.1
9
9
2

1
1
.0
1
.1
9
9
4

1
1
.0
1
.1
9
9
6

1
1
.0
1
.1
9
9
8

1
1
.0
1
.2
0
0
0

1
1
.0
1
.2
0
0
2

1
1
.0
1
.2
0
0
4

1
1
.0
1
.2
0
0
6

1
1
.0
1
.2
0
0
8

1
1
.0
1
.2
0
1
0

1
1
.0
1
.2
0
1
2

MXWO SPGCCI

Note: Standard deviations over a 1-year moving window of commodity and equity returns.
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Figure 3: Commodity and equity correlations
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Note: Sample correlations between commodity and equity returns computed on moving windows of

different length: 3-months (3M); 6 months (6M); and 1-year (1Y).

Figure 4: Dynamic Conditional Correlations between the MSCI and the
SPGSCI
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Note: Correlations between commodity and equity returns estimated using a Dynamic Conditional

Correlation model. The vertical dashed line marks the estimated breakpoint (5 September 2008).

28



Figure 5: Log-Score Differentials
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Note: Log-Score (CER) Differentials versus the Log-Score of the RW benchmark.

29



Figure 6: CER Differentials
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Note: Certainty Equivalent Return (CER) Differential at an horizon of two weeks, with respect to the

CER of the passive strategy holding only equities, with transaction costs set at 5 basis points.

30



Figure 7: Volatility for portfolios with and without commodities
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asset allocation) and excluding commodities (using a RW model for the dynamic asset allocation).
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Figure 8: Dynamic Conditional Correlations between the S&P500 and the
SPGSCI
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Note: Correlations between commodity and equity returns estimated using a Dynamic Conditional

Correlation model. The vertical dashed line marks the estimated breakpoint (5 September 2008).
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