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Abstract

Recent academic papers and practitioner publications suggest that equal-weighted portfolios (or

1/N portfolios) appear to outperform various other portfolio strategies. In addition, as the equal-

weighted portfolio does not rely on expected average returns, it is therefore assumed to be more

robust compared to other price-weighted or value-weighted strategies. In this paper we provide

a theoretical framework to the equal-weighed versus value-weighted equity portfolio model, and

demonstrate using simulation as well as real-world data from 1926 to 2014 that an equal-weighted

strategy indeed outperforms value-weighted strategies. Moreover, we demonstrate that a significant

portion of the excess return is attributable to portfolio rebalancing. Finally, we show that because

of equal-weighting the excess returns are higher than the higher costs incurred due to higher port-

folio turnover. Therefore, even after accounting for higher portfolio turnover costs, equal-weighting

makes economic sense.

JEL classification: G11

Keywords: Equal-weighted, cap-weighted, 1/N, asset allocation, portfolio optimization
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1 Introduction

Since the introduction of the S&P 500 index in 1957, most indices have been weighted by market

capitalization (or value-weighted, abbreviated as VW). By the end of 2014, S&P Dow Jones Indices

estimates that over $7.8 trillion was benchmarked to the S&P 500 alone, with indexed assets making

up $2.2 trillion of this total.1 The theoretical foundation for VW indices as a benchmark for

investors is provided by the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner

(1965), and the Efficient Market Hypothesis (EMH) of Fama (1970). According to the CAPM

model, the expected return implicit in the price of a stock should be commensurate with the risk of

that stock. Based on the CAPM and EMH theory, the most efficient portfolio would be the entire

market and a broad VW index would represent the optimal mean-variance efficient investment.

However, following the critique by Roll (1977), there has been considerable debate (examples of

which are available in Gruber and Ross (1978) and Gibbons (1982)) as to how efficient the market

portfolio is in practice. Thus, there are countless different strategies2 as documented by Arnott

et al. (2005) to beat the market. This has led to indices created based on alternative factors that

measure different strategies, sometimes referred to as Smart Beta strategies, as explained by Amenc

et al. (2011b) and Amenc and Goltz (2013). Investors have been attracted by the performance of

these indices compared to traditional cap-weighted indices. Some of the popular alternative indices

are FTSE EDHEC-Risk Efficient Index, Intech’s Diversity-Weighted Index, Research Affiliates

Fundamental Index, QS Investors’ Diversification Based Investing (DBI), and TOBAM’s Maximum

Diversification Index.

Recent studies by DeMiguel et al. (2009) and Plyakha et al. (2015) suggest that equal-weighted

portfolios (also known as 1/N, abbreviated as EWP) appear to outperform 14 different portfolio

weighting strategies. The out-of-sample performance of an EWP of stocks is significantly better

than that of a value-weighted portfolio (abbreviated as VWP), and no worse than that of portfolios

from a number of optimal portfolio selection models. Plyakha et al. (2014) report that for the

14 models that they studied using seven empirical datasets, none were consistently better than

the EWP in terms of Sharpe ratio, certainty-equivalent return, or turnover. Because the EWP

1
http://www.spindices.com/documents/index-policies/spdji-indexed-assets-survey-2014.pdf

2
http://faculty-research.edhec.com/_medias/fichier/edhec-position-paper-smart-beta-2-0_1378195044229-pdf
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does not rely on expected average returns, it is therefore assumed to be more robust compared to

other price-weighted or VW strategies. Moreover an EW strategy minimizes the risk of a portfolio

deviating from the investor’s target allocation objectives.

In this paper our objective is not to support one of the several alternative beta strategies in

the market, as they all seem to outperform VW indices according to Arnott et al. (2005), Chow

et al. (2011), and Amenc et al. (2011a). Rather, we focus on the nature and source of EWP

returns. Given the positive excess returns of EWPs relative to VWPs in the equity asset class, two

natural questions arise: (1) Can this excess return be realized under various market scenarios and

time horizons? and (2) What is the source of these positive excess returns? Plyakha et al. (2015)

identified rebalancing as the main source of excess returns by using two experiments with simulated

data. We develop a model to explain the source of excess returns, and test it with both simulated

and real-world data. In this paper we provide a theoretical framework for the EWP model, and

demonstrate using simulation and historical data that an EW strategy indeed outperforms VW

strategies. Then we show that rebalancing is a key driver behind the positive excess retun of the

EWPs

To undertake our analysis, a two-period equity portfolio model with two assets is developed.

This model can be extended to multiple periods as well as multiple assets. This equity portfolio

model proves that after portfolio rebalancing, if smaller-cap stocks outperform larger-cap stocks,

then the EWP will produce higher returns than the VWP. Given that smaller-cap stocks are riskier

than larger-cap stocks, it is quite natural to expect a higher return from smaller-cap stocks. So it

is plausible for an EWP to outperfom a VWP. We validate the model with five tests to see if EWPs

produce higher returns and Sharpe ratios than VWPs.

The flow of this paper is as follows. Section 2 describes the portfolio model for VWP and

EWP. In Section 3 we describe the data used. The results are presented and discussed in Section

4, followed by our conclusions in Section 5.

2 Portfolio Model

In this section, an equity portfolio is built with two (n=2) stocks A and B. Either A or B can be

a large cap stock. At t=0, an investor’s wealth is invested in either a VW or EW portfolio. At

4



t=1, single-period returns of value-weighted portfolio (denoted as V) and equal-weighted portfolio

(denoted as E) are computed. The main difference between the two portfolios (V and E) is that

equal-weighted portfolio has to be rebalanced after t=1, whereas the value-weighted portfolio does

not require rebalancing. At t=2, the returns denoted by R2V and R2E , the standard deviation of

returns denoted by σ2V and σ2E , and Sharpe ratios denoted by S2V and S2E are computed. In the

end, the following five metrics are computed:

1. Excess return of EWP over VWP: R2E −R2V

2. Excess risk of EWP over VWP: σ2E − σ2V

3. Excess Sharpe ratio of EWP over VWP: S2E − S2V

4. Decomposed excess return due to rebalancing effect

5. Decomposed excess return due to size effect.

2.1 Value-weighted portfolio return

Let M0 denote the investable wealth (or portfolio value) at t=0 and then

Marketcap of firm A at t=0 is: VA0 = PA0QA, where PA0 is price of A, QA is number of shares outstanding

Marketcap of firm B at t=0 is: VB0 = PB0QB, where PB0 is price of B, QB is number of shares outstanding

Portfolio value invested in firm A, at t=0, according to value - weight is: MA0V =
M0PA0QA

PA0QA + PB0QB

Portfolio value invested in firm B, at t=0, according to value - weight is: MB0V =
M0PB0QB

PA0QA + PB0QB

whereM0 = MA0V +MB0V

Number of firm A stocks in portfolio at t=0: NA0V =
MA0V

PA0
=

M0QA

PA0QA + PB0QB

Number of firm B stocks in portfolio at t=0: NB0V =
MB0V

PB0
=

M0QB

PA0QA + PB0QB

Similarly at t=1: VA1 = PA1QA, VB1 = PB1QB, MA1V = NA0V PA1, MB1V = NB0V PB1

Value-weighted portfolio return between t=0 and 1 = R1V =
MA1V +MB1V

MA0V +MB0V
− 1

⇒ R1V =
QA (PA1 − PA0) +QB (PB1 − PB0)

QAPA0 +QBPB0
(1)
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Since the VWP is not rebalanced after t=1, NA1V = NA0V , NB1V = NB0V

Similarly at t=2: VA2 = PA2QA, VB2 = PB2QB, MA2V = NA1V PA2, MB2V = NB1V PB2

Value-weighted portfolio return between t=1 and 2 = R2V =
MA2V +MB2V

MA1V +MB1V
− 1

⇒ R2V =
QA (PA2 − PA1) +QB (PB2 − PB1)

QAPA1 +QBPB1
(2)

2.2 Equal-weighted portfolio return

Again, letting M0 denote the investable wealth (or portfolio value) at t=0 and then

Marketcap of firm A at t=0 is: VA0 = PA0QA, where PA0 is price of A, QA is number of shares outstanding

Marketcap of firm B at t=0 is: VB0 = PB0QB, where PB0 is price of B, QB is number of shares outstanding

Given that n = 2, 50% of the portfolio will be invested in A and B each.

⇒MA0E = MB0E =
M0

2
, NA0E =

M0

2PA0
, NB0E =

M0

2PB0
, MA1E = NA0EPA1, MB1E = NB0EPB1

Equal-weighted portfolio return between t=0 and 1 = R1E =
MA1E +MB1E

MA0E +MB0E
− 1

⇒ R1E =

(
PA1

2PA0
+

PB1

2PB0

)
− 1 (3)

Unlike the value-weighted portfolio, the equal-weighted portfolio weights have to be rebalanced

after t=1. Given the portfolio value of MA1E +MB1E at t=1 before rebalancing, the portfolio value of

A and B after rebalancing will be MA1ER = MB1ER =
1

2
(MA1E +MB1E) .

As a result, NA1ER =
MA1ER

PA1
, and NB1ER =

MB1ER

PB1
.

So at t=2: VA2 = PA2QA, VB2 = PB2QB, MA2E = NA1ERPA2, MB2E = NB1ERPB2

Equal-weighted portfolio return between t=1 and 2 = R2E =
MA2E +MB2E

MA1E +MB1E
− 1

⇒ R2E =

(
PA2

2PA1
+

PB2

2PB1

)
− 1 (4)
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2.3 Excess return for the portfolio

We define excess return, R2E −R2V , as the EWP return minus the VWP return at t=2.

R2E −R2V =

(
PA2

2PA1
+

PB2

2PB1

)
− 1− QA (PA2 − PA1) +QB (PB2 − PB1)

QAPA1 +QBPB1

⇒ R2E −R2V =
QAP

2
A1PB2 + PA2QBP

2
B1 − PA1PB1 (QAPA2 +QBPB2)

2PA1PB1 (QAPA1 +QBPB1)
(5)

⇒ R2E −R2V =
(PA1PB2 − PB1PA2) (PA1QA − PB1QB)

2PA1PB1 (QAPA1 +QBPB1)
(6)

Based on equation (6), at t=2, the EWP will produce a higher return than a VWP if and only

if R2E −R2V > 0. This is possible under the two scenarios discussed next.

Scenario (a): PA1PB2 − PB1PA2 > 0⇒ PB2/PB1 > PA2/PA1 ⇒ B has a higher return than A.

and PA1QA − PB1QB > 0⇒ PA1QA > PB1QB ⇒ B has a smaller cap compared to A.

Together the above two conditions imply that if the return of the small cap stock is greater

than that of the large cap stock, then the excess return will be positive.

Scenario (b): PA1PB2 − PB1PA2 < 0⇒ PB2/PB1 < PA2/PA1 ⇒ A has higher return than B.

and PA1QA − PB1QB < 0⇒ PA1QA < PB1QB ⇒ A has a smaller cap compared to B.

As in scenario (a), the above two conditions imply that if the return of the small cap stock

exceeds that of the large cap stock, then the excess return will be positive.

In summary, in both scenarios (a) and (b) after rebalancing the portfolio at t=1, if the smaller-

cap stock outperforms the larger-cap stock, then the EWP will produce higher returns than a VWP.

Given that the smaller-cap stocks are riskier than the larger-cap stocks, it is quite natural to expect

a higher return from the smaller-cap stock in the long-run, thus it follows that because of portfolio

rebalancing, an EWP will produce higher returns than a VWP. The same logic can be extended to

the multi-period and multi-asset cases.
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2.4 Excess risk (Standard Deviation)

In this section, excess risk is defined as the difference between the EWP standard deviation and

the VWP standard deviation, denoted by σE-σV . If at t=2, the standard deviation for the large

cap (L) and the small cap (S) returns are denoted by σL and σS , and the correlation between those

returns is denoted by ρ, then the portfolio variance

σ2
P = W 2

Lσ
2
L +W 2

Sσ
2
S + 2WLWSσLσSρ

For EWP, WL = WS = 0.5. Letting σS - σL = d, then

σ2
E = 0.25

(
σ2
L + σ2

S

)
+ 0.5σLσSρ = 0.25

(
σ2
L + (σL + d)2

)
+ 0.5σLρ (σL + d) (7)

For VWP, WL > 0.5. Letting WL = 0.5 + e, where 0 < e < 0.5⇒WS = 0.5− e, then

σ2
V = (0.5 + e)2σ2

L + (0.5− e)2(σL + d)2 + 2 (0.5 + e) (0.5− e)σL (σL + d) ρ (8)

⇒ σ2
E − σ2

V = 0.5d2(1− e)e+ de(1 + e(ρ− 1))σL + e2(ρ− 1)σ2
L (9)

The EWP will have a higher variance than the VWP if σ2
E − σ2

V = (σE − σV )(σE + σV ) > 0.

Since (σE + σV ) > 0 always, the excess risk will be positive when σE-σV > 0. Excess risk is

therefore a function of f(d, e, ρ, σL). EWP will have a higher variance depending on the value of

d (difference in standard deviation of small cap and large cap), e (large cap weight minus equal

weight), and ρ (correlation between large cap and small cap). Given that equation (9) is a function

of d, e, ρ, and σL, when excess risk is positive, the following parameter values are realized.

d >
σL

[
1 + e(ρ− 1)±

√
1 + e2(ρ2 − 1)

]
e− 1

(10)

e >
d2 + 2dσL

d2 + 2σL(1− ρ)(d+ σL)
(11)

σL >
−d
[
1 + e(ρ− 1)±

√
1 + e2(ρ2 − 1)

]
2e(ρ− 1)

(12)
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ρ >
(e+ 1)σL

2 + (e− 1)(d+ σL)2

2σL(d+ σL)e
(13)

2.5 Excess Sharpe Ratio

The excess Sharpe ratio is defined as EWP Sharpe ratio minus VWP Sharpe ratio, denoted by

SE −SV . If at t=2, the realized annual returns of small cap and large cap are RS , RL respectively,

annual risk-free rate is RF , standard deviations of large cap and small cap returns are σL, σS , and

the correlation between large cap and small cap returns is ρ,

EWP return, RE = 0.5(RL +RS)

VWP return, RV = RL(0.5 + e) +RS(0.5− e)

Then the Sharpe ratios of EWP and VWPs are

SE =
0.5(RL +RS)−RF√

0.25σL2 + 0.5ρσL (d+ σL) + 0.25(d+ σL)2
(14)

SV =
RL(0.5 + e) +RS(0.5− e)−RF√

(0.5 + e)2σL2 + 2 (0.5− e) (0.5 + e) ρσL (d+ σL) + (0.5− e)2(d+ σL)2
(15)

SE−V = Excess Sharpe Ratio = SE − SV (16)

2.6 Rebalancing and Size effect

If the EWP has two stocks consisting of a large cap (A) and small cap (B), and produces a positive

excess return, a natural question arises about the source of these excess returns. EWP and VWPs

differ only in terms of weight of the small cap stocks and rebalancing. So the excess return can be

attributed to one of these two. In this section, the excess return is decomposed into excess return

attributable to the rebalancing effect and excess return attributable to the size (small-cap) effect.

In the Section 2.2, the EWP return is computed using equation (4), when the portfolio is

rebalanced after t=1. If the EWP is not rebalanced after t=1, then the number of stocks in the

non-rebalanced EWP will continue to be NA1E , and NB1E , instead of NA1ER, and NB1ER as in

9



Section 2.2. So without rebalancing, the portfolio value of the non-rebalanced EWP at t=2 will be

M2E NR = MA2E NR +MB2E NR,where MA2E NR = NA1EPA2, MB2E NR = NB1EPB2.

The non-rebalanced EWP return between t=1 and 2 = R2E NR =
M2E NR

M1E
− 1

⇒ R2E NR =
MA2E NR +MB2E NR −M1E

M1E
=
PB0(PA2 − PA1) + PA0(PB2 − PB1)

PA1PB0 + PA0PB1
(17)

The excess return, R2E −R2V , can be decomposed into excess return due to rebalancing effect and

excess return due to size (small-cap) effect as shown below.

Excess Return = R2E −R2V = (R2E −R2E NR)︸ ︷︷ ︸
Rebalancing effect

+ (R2E NR −R2V )︸ ︷︷ ︸
Size effect

(18)

Rebalancing Effect = R2E −R2E NR =
PA0PA2P

2
B1 + PB0PB2P

2
A1 − PA1PB1 (PA2PB0 + PA0PB2)

2PA1PB1 (PA1PB0 + PA0PB1)

(19)

Size Effect = R2E NR −R2V =
(PA2PB1 − PA1PB2) (PB0QB − PA0QA)

(PA1PB0 + PA0PB1) (QAPA1 +QBPB1)
(20)

As shown in equation (19), the rebalancing effect does not depend on the market cap of stocks

in the portfolio, and dependents solely on price movements. The return due to rebalancing is

positive, i.e., R2E − R2E NR > 0, when PA0PA2P
2
B1 + PB0PB2P

2
A1 > PA1PB1 (PA2PB0 + PA0PB2).

By further simplification, it can be shown that R2E − R2E NR > 0 when RB1 > RA1. In other

words when the small cap return is more than the large cap return at t=1, the rebalancing effect

for the EWP is going to be positive. Given that small cap stocks are riskier than the large cap

stocks, it is quite natural to expect a higher return from the small cap stock in the long-run, thus

it follows that because of portfolio rebalancing, an EWP will produce higher returns than a VWP.

As shown in equation (20), the size effect depends on both price fluctuations and the size

of stocks. The return due to size effect is positive, i.e. R2E NR − R2V > 0, when PA2PB1 <

PA1PB2 and PB0QB < PA0QA ⇒ PA2
PA1

< PB2
PB1

and PB0QB < PA0QA. This implies that size effect

does not depend on the returns at t=1, but instead depends on the returns at t=2. In addition,

given that B is a small cap stock, if the return on stock B is more than the return on the large cap

stock A at t=2, then the size effect is going to be positive.

10



2.7 Excess portfolio turnover and transaction costs

Since the EWP gets rebalanced after every time period, it will have a higher portfolio turnover

compared to that of the VWP. In this section we analyze the excess turnover, denoted by TOEX ,

defined as the percentage of stocks rebalanced (or traded) to maintain equal weights of stocks in

each time period. Since EWP is rebalanced before t=2,

TOEX =
((NA1ER +NB1ER)− (NA1E +NB1E))

(NA1E +NB1E)
=

(PA1PB0 − PA0PB1) (PA1 − PB1)

2PA1PB1 (PA0 + PB0)
(21)

Next, to compute the impact of excess portfolio turnover on portfolio return, we use Aggregate

Trading Costs (ATC) based on the methodology and findings of Edelen et al. (2013). ATC captures

invisible costs (commission, bid-ask spread, price impact, and the volume of trades) and should be

added to the visible cost (expense ratio). ATC is computed by first calculating the per unit cost of

a trade and then multiplying the per unit cost of each trade (portfolio change) by the dollar value

of the trade and summing across all trades for the time period. As a result of portfolio turnover,

the net impact on portfolio return is going to be a negative TOEX ∗ATC.

3 Data

Historical stock-level data are not required in Sections 4.1, and 4.2 because prices are simulated.

When individual portfolios are not required as in Section 4.3, and 4.4, VW and EW index returns

(including dividends) are used from the CRSP (ASI) dataset for years from 1926 to 2014. To create

VWP and EWPs in Section 4.5, stock-level data are obtained from CRSP monthly stock dataset

from January 1926 to December 2014. A total of 4,150,448 monthly stock returns were obtained

for the analysis.3

When investable indexes are required for comparison purposes as in Section 4.7, the Russell

1000 index (which contains 1000 large cap firms with 90% of the total market capitalization of

Russell 3000 index) is used as a proxy for large cap returns, and the Russell 2000 index (which

contains 2000 small cap firms with 10% of the total market capitalization of Russell 3000 index) is

3Since the same ticker symbol is used for multiple companies, and same company can have multiple classes of
shares during the window of analysis, PERMCO is used as a unique key for analysis.
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used as a proxy for small cap returns. Russell indices monthly data are available between October

1992 and December 2014. Summary statistics of data is shown in Table 1.

Insert Table 1 here.

To ensure that there is enough liquidity in the underlying stocks and to compare performance

with the S&P500, the maximum number of stocks in the EWP is limited to the largest 500 stocks

by market value. If any company’s stock is delisted during the year, that stock position is liquidated

using the last available price at the beginning of the year, and those proceeds are allocated either

according to the weights (in case of VWP) or equally (in case of EWP). For the VWP, the portfolio

is rebalanced at the beginning of every year to account for any new listings and delistings. For the

EWP, the portfolio is rebalanced at the beginning of every year to account for any new listings,

delistings, and change in portfolio weights during the year.

4 Results

The VW and EW equity portfolio model developed in Section 2 is validated based on the following

five tests. For analysis and discussion purposes, the VW return R2V is computed with equation

(2), EW return R2E with equation (4), and excess return R2E − R2V with equation (6). Excess

risk σE-σV is computed as described in Section 2.4, and excess Sharpe ratio SE−V with equation

(16). The five tests are

Test 1: Random prices, or random returns for small cap and large cap stocks.

Test 2: Normally distributed returns with higher mean and standard deviation for small cap

stocks.

Test 3: Bootstrapping simulation using historical data from 1926 to 2014.

Test 4: Curve fitting using historical data from 1926 to 2014.

Test 5: Constructing EWP and VWPs using historical data from 1926 to 2014.

4.1 Random prices

In this test, it is assumed that the initial market cap at t=0 for A is larger than that of B.

All the prices PA0, PA1, PA2, PB0, PB1, PB2 are randomly chosen between $0 and $100 with equal

12



probabilities. Although this type of price pattern is unrealistic in real-world, the purpose of this

test is to demonstrate that the excess return R2E − R2V can be positive when stock prices are

randomly-generated.

As shown in Figure 1, after 10,000 such simulations, the EWP produces positive returns 59% of

the time, whereas VWP produces positive returns 49% of the time. The excess return R2E −R2V

is positive 66% of the time, with a mean of 15.5%. The Sharpe ratio is also higher for the EWP.

VWP has a mean return of -0.55%, standard deviation of 36.94%, and Sharpe ratio of -0.096. EWP

has a mean return of 14.92%, standard deviation of 48.90%, and Sharpe ratio of 0.24. Although

the results reported here assume a risk-free rate of 3%, the results are unchanged for any risk-free

rate between 0% and 5%. In repeated simulations it is found that the EWP has a higher mean

return, higher standard deviation, and higher Sharpe ratio. This case demonstrates that even with

totally random prices, a EWP produces superior returns compared to a VWP.

Insert Figure 1 here.

4.2 Normally distributed returns

In this test, returns RA1 = PA1−PA0
PA0

, and RA2 = PA2−PA1
PA1

are normally distributed for a large cap

stock, with a mean and standard deviation of (µL, σL). Similarly, returns RB1 = PB1−PB0
PB0

, RB2 =

PB2−PB1
PB1

are normally distributed for a small cap stock, with a mean and standard deviation of

(µS , σS). Given that small cap returns are larger and more volatile than the same for large cap, it

is quite natural to have µL < µS , and σL < σS . For the purpose of our illustration, the results of

10,000 such excess return simulations for µL = 5%, µS = 8%, σL = 10%, σS = 15% are shown in

Figures 2, 3, and 4. However, the results are tested for robustness for any µL < µS , and σL < σS .

The EWP produces positive returns 76% of the time, whereas VWP produces positive returns

75% of the time. The mean excess return R2E − R2V is 0.79%, and it is positive in 56.4% of the

simulations. The mean, and median excess returns are also positive. This pattern is consistent in

repeated simulations for any µL < µS , and σL < σS .

The Sharpe ratio is also higher for the EWP. VWP has a mean return of 5.8% and standard

deviation of 8.46%, whereas EWP has a mean return of 6.6% and standard deviation of 9.0%.

Assuming a risk-free rate of 3%, the Sharpe ratio is 0.33 for VWP and 0.40 for EWP.
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Insert Figures 2, 3, 4 here.

In summary, both the random prices in Section 4.1, and normally distributed returns in Section

4.2 illustrate that EWP outperforms VWP in both mean return and Sharpe ratio. In the next

section historical data are used rather than simulated random prices and simulated normal returns.

4.3 Bootstrapping historical data

In this test, VW and EW annual returns (including dividends) are obtained from CRSP (ASI)

dataset for the years from 1926 to 2014. A summary of these two returns are shown in Figures 5,

6, and Table 1.(2).

Insert Figures 5 and 6 here.

To compute a 2-period return, any two years are randomly selected using replacement from

1926 to 2014. Then for each selected year, the corresponding VW and EW returns are used from

the dataset. By doing so, the RA1, RA2, RB1, RB2 used in Section 4.2 are no longer selected from

a normal distribution. Instead they are picked from the past historical data. This process was

repeated 10,000 times.

The results are summarized in Figures 7, 8, and 9. After 10,000 such simulations, EWP produces

positive returns 75.2% of the time, whereas VWP produces positive returns 73.9% of the time. The

excess return R2E − R2V is positive 54.1% of the time, has mean of 1.01%, and similar to the

1.8% annual excess return found by the S&P Indices global research team over a 20-year period

between 1998 and 2008.4 In addition, the Sharpe ratio of the EWP is also slightly higher than the

VWP (0.46 vs 0.45), again assuming a risk-free rate of 3%. Given the similarity of EWP and VWP

returns, we conducted a pair-wise t-test on EWP and VWP to check the statistical significance

of results. The results are shown in Table 2. A p-value of 0.00 suggests that EW returns are

statistically different to VW returns, and the 95% confidence interval shows that excess returns are

positive. As in the previous two test, in this test the EWP produces statistically significant and

better excess return and Sharpe ratios.

Insert Figures 7, 8, 9, and Table 2 here.

4https://us.spindices.com/documents/research/EqualWeightIndexing_7YearsLater.pdf
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4.4 Curve fitting historical data

In this test, VW and EW annual returns (including dividends) are used from CRSP (ASI) dataset

for years from 1926 to 2014. The actual return distribution is fitted to the best possible matching

distribution using the Anderson-Darling (A-D) method. Using this approach, the best match for

large cap stocks with an A-D of 0.1741 is a Weibull distribution with a location of -101.10%, scale

of 120.97%, and shape of 6.672. Similarly, the best match for small cap stocks with an A-D of

0.2377 is a logistic distribution with a mean of 15.56%, and scale of 15.29.

Next, using these matching parameters, returns are computed for EWP and VWPs using 10,000

simulations. As shown in Figure 10, the EWP produces positive returns 79.4% of the time, whereas

VWP produces positive returns 78.1% of the time. The annual excess return R2E −R2V is positive

54.8% of the time with a mean of 1.03%. In addition, the Sharpe ratio of the EWP is also higher

than the VWP (0.63 vs 0.58).

Insert Figure 10 here.

4.5 Constructed portfolios

In this section, EWP and VWPs are constructed consisting of all the publicly traded stocks using

monthly historical data from 1926 to 2014. To ensure that there is enough liquidity in the underlying

stocks and to compare performance with the S&P500, the maximum number of stocks in the EWP

is limited to the largest 500 stocks by market value. If any company’s stock is delisted during the

year, that stock position is liquidated using the last available price at the beginning of the year,

and those proceeds are allocated either according to the weights (in case of VWP) or equally (in

case of EWP). For the VWP, the portfolio is rebalanced at the beginning of every year to account

for any new listings and delistings. For the EWP, the portfolio is rebalanced at the beginning of

every year to account for any new listings, delistings, and change in portfolio weights during the

year.

After rebalancing every year, returns are computed for EWP and VWPs. The results of a pair-

wise t-test on EW and VW constructed portfolio returns are shown in Tables 3 and 4. Between the

years 1926 and 2014, EWP produced positive returns 60.2% of the time, whereas VWP produced

positive returns 56.8% of the time. The annual excess return R2E − R2V is positive 69.3% of the
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time, with a mean of 4.1%. In addition, the Sharpe ratio of the EWP is also higher than the VWP

(0.11 vs -0.07).

Insert Tables 3 and 4 here.

In conclusion, in the absence of trading costs, in all the five tests (i.e.,: theoretical random

prices, normally distributed returns, matching historical index prices using bootstrapping simula-

tion, simulated returns using historical rates using curve fitting, and actual portfolio construction),

EWP returns are higher and positive more number of times when compared to the VWP returns.

In addition, Sharpe ratios are higher for EWPs. The results from five tests are summarized in

Table 4.

4.6 Excess risk

In this section, we switch our attention from return to risk in order to determine if the excess

return is obtained by taking excess risk, and, if so, what happens to the risk-adjusted returns. In

the context of EWP and VWPs, excess risk is defined for a given time period as the EWP standard

deviation minus the VWP standard deviation. Excess risk is computed as explained in Section 2.4

using equation (9).

The distribution of d, e, ρ, σL in this section is based on the historcial VW and EW annual

return data (including dividends) obtained from the CRSP (ASI) dataset for the years from 1926

to 2014. The following parameters characterize the underlying data: d is between 5%, and 15%

with equal probability, e is between 5% and 45% with equal probability, ρ is between -0.9 and 0.9

with a likely value of 0.6 using a triangular distribution, and σL is between 10% and 25% with

equal probability. All these parameters, small cap return RS , and large cap return RL are selected

using bootstrap by replacement method as described in Section 4.3.

After 10,000 such simulations, the excess risk is found to be positive 99% of the time. It simply

means that EWP produces excess return over VWP, but as one would expect, at the cost of higher

risk. However, as shown in Table 4, and explained in Section 4.7, the Sharpe ratio is always higher

for the EWPs. As shown in Figure 11, the excess risk varies from -2.18% to 4.37%, with a mean of

1.15%, a median of 1.01%, and a standard error of 0.01%. The excess risk is negative only when

the large cap weight approaches 100% of the portfolio.
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Insert Figure 11 here.

4.7 Excess Sharpe Ratio

In the context of EWP and VWPs, the excess Sharpe ratio is defined for a given time period as

the EWP Sharpe ratio minus the VWP Sharpe ratio. As explained in Section 2.5, excess Sharpe

ratio is computed using equation (16).

The distribution of d, e, ρ, σL in this section is the same as the one described in Section

4.6. Although the results reported here assume a risk-free rate of 3%, the results do not change

significantly for any risk-free rate between 0% and 5%.

As shown in Figure 12, after 10,000 simulations the excess Sharpe ratio of EWP over VWP is

found to be positive 63% of the time, and the average varies from 0.009 for small equal-weighting

effect to 0.06 for large equal-weighting effect. The average excess Sharpe ratio for the entire dataset

is 0.03. This is close to the observed excess Sharpe ratio of 0.04 between two of the largest exchange-

traded funds, Guggenheim S&P 500 Equal Weight ETF (RSP)5, and SPDR S&P 500 ETF (SPY).6

As of July 2015, the Sharpe ratio for RSP is 1.98 and 1.94 for SPY.

For robustness, we computed the 95% confidence interval of the mean excess Sharpe ratio. It

is between 0.0272 and 0.0331 with a t-statistic of 20. This clearly validates that the risk-adjusted

return of the EW portfolios is higher than that of the VW portfolios. Though in aggregate the

excess Sharpe ratio is positive, as one would expect, during some periods it can be negative. As an

example during the credit crisis (years 2007 and 2008) as well as during the dot-com bubble (years

1999, 2000, 2001) excess Sharpe ratio is positive. However post credit crisis (years 2009 to 2014)

excess Sharpe ratio is negative. Parameter values for these sub-periods can be found in Table 1.

Insert Figure 12 here.

4.8 Decomposition of excess return into rebalance and size effect

After showing that excess returns are positive, the next question to answer is about the source

of these excess returns. As described in Section 2.6, the excess return is decomposed into return

due to rebalancing, and return due to size (small-cap). Although Perold and Sharpe (1995) did

5http://finance.yahoo.com/q/rk?s=RSP
6http://finance.yahoo.com/q/rk?s=SPY
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not use the word equal-weighting, they recognized that periodic rebalancing of a portfolio to its

target allocation as one of the dynamic strategies for asset allocation. What they called Constant

Proportion Portfolio Insurance (CPPI) can be thought of as a variation of EWP. CPPI was found

to outperform other dynamic strategies in a bull market and simpler to implement than an option-

based portfolio insurance.

In this section, excess return R2E − R2V is decomposed into return due to rebalancing R2E −

R2E NR using equation (19), and return due to size effect R2E NR −R2V using equation (20). We

present here the results from the Section 4.1 (random prices), as they are most generic and not

dependent on any index or market condition, to illustrate the point that significant portion of excess

returns are due to rebalancing of the portfolio.

In each of the 10,000 simulation runs, the excess return is decomposed into return due to

rebalancing, and return due to size effect. The results are summarized in Figure 13. In 19 out of 20

categories, rebalancing is the main contributor to the excess return. On average, 85% of the excess

returns are due to rebalancing effect. In addition, it can be seen in Figure 14 that almost all the

average excess return R2E −R2V of 15.64% is due to the return from the equal-weighting (R2E of

15.97%), with very little attributable to the return from value-weighting (R2V of 0.34%). Almost

all the excess return is due to the rebalancing effect of 15.67%.

Insert Figures 13, and 14 here.

4.9 Excess portfolio turnover and transaction costs

As explained in Section 2.7, excess turnover (TOEX) is defined as the percentage of stocks traded

to rebalance and maintain equal weights of stocks in each time period.

As the portfolio becomes more equal-weighted, portfolio turnover increases and excess return

also increases. As shown in Figure 15, for every 1% increase in portfolio return the portfolio

turnover increases by 0.4669%. The mean of TOEX is 13.61% with a standard deviation of 25.35%.

Next, to compute the impact of excess portfolio turnover on portfolio return, we use ATC based

on the methodology and findings of Edelen et al. (2013). They calculated ATC as 1.69% for large

funds (with an average of $2.88 billion assets) and 1.19% for small funds (with an average of $164

million assets), based on the 3,799 open-end domestic equity mutual funds data using quarterly
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portfolio holdings data from Morningstar from 1995 to 2006. Fund size plays a role in trading

costs because estimated per unit trading costs are more than 30 bps higher for large funds than

for small funds. As a result of portfolio turnover, the net impact on annual portfolio return is

going to be a negative TOEX ∗ ATC, or -0.23% for large funds and -0.16% for small funds. As

shown in Table 4, in all five tests the mean of excess returns is higher than 0.23%. Because the

benefit of equal-weighting is higher than the cost, equal-weighting makes economic sense even after

accounting for higher portfolio turnover costs.

Insert Figure 15here.

5 Conclusion

Recent studies by DeMiguel et al. (2009) and Plyakha et al. (2015) suggest that equal-weighted

portfolios (also known as 1/N, sometimes abbreviated as EWP) appear to outperform 14 different

portfolio weighting strategies. Several portfolio weighting strategies, including alternative beta

strategies7 have emerged in the marketplace, as they all seem to outperform VW indices according

to Arnott et al. (2005), Chow et al. (2011), and Amenc et al. (2011a). Given the positive excess

returns of EWPs over VWPs in the equity asset class, two natural questions arise. First, Can this

excess return be realized under various market scenarios and time horizons? Second, what is the

source of these positive excess returns? In this paper we provide a theoretical framework for the

EWP model, and demonstrate using simulation and historical data that an EW strategy indeed

outperforms VW strategies. We then show that rebalancing is a key driver behind the positive

excess retun of the EWPs.

To undertake our analysis, we first develop a EWP and VWP model that allows for portfolio

rebalancing. This model demonstrates that after rebalancing a portfolio, if the smaller-cap stocks

outperform the larger-cap stocks, then the EWP will produce higher returns than a VWP. We use

five tests to confirm that the EWP outperforms the VWP in terms of return and Sharpe ratio.

In order to understand the source of the positive excess return of EWP over VWP, we decompose

the excess return into return due to rebalancing effect, and return due to size effect. The rebalancing

7
http://www.edhec-risk.com/edhec_publications/all_publications/RISKReview.2015-03-26.2929/attachments/

EDHEC_Publication_Alternative_Equity_Beta_Investing_Survey.pdf
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effect does not depend on the market cap of stocks in the portfolio, and dependents solely on price

movements. The size effect depends on both price fluctuations and the market cap of stocks. We

show that in 19 out of 20 categories, rebalancing is the main contributor to the excess return. On

average, 85% of the excess returns are due to rebalancing effect, and the remaining 15% are due to

size effect.

Finally, we show that because of equal-weighting the excess returns are higher than the higher

costs incurred due to higher portfolio turnover. Therefore, even after accounting for higher portfolio

turnover costs, equal-weighting makes economic sense.
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Figure 1. Simulated excess return R2E − R2V using random prices PA0, PA1, PA2, PB0, PB1, PB2.
After 10,000 simulations, EWP produces positive returns 59.2% of the time, whereas VWP produces
positive returns 49.2% of the time. This pattern is consistent in repeated simulations. The excess
return R2E −R2V is positive 65.5% of the time. The Gaussian fitted curve shows a mean return of
19% for EWP, and -1% for VWP. More detailed statistics can be seen in Table 4

.

Figure 2. Simulated VW return R2V using normal returns µL = 5%, µS = 8%, σL = 10%, σS =
15%.
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Figure 3. Simulated EW return R2E using normal returns µL = 5%, µS = 8%, σL = 10%, σS =
15%.

Figure 4. Simulated excess return R2E − R2V using normal returns µL = 5%, µS = 8%, σL =
10%, σS = 15%. After 10,000 such simulations, the excess return is positive 56.4% of the time. The
mean, and median excess returns are also positive. More detailed statistics can be seen in Table 4.
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Figure 5. Historical returns of Value-weighted (top 500 VW) and Equal-weighted (bottom 2000
by EW) index.

Figure 6. Excess returns (equal-weight minus value-weight) using historical data (1926-2014).
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Figure 7. Value-weighted returns R2V using historical data (1926-2014) and Bootstrapping sim-
ulation. Annualized VW mean return for the period is 13%, with a standard deviation of 21%.

Figure 8. Equal-weighted returns R2E using historical data (1926-2014) and Bootstrapping sim-
ulation. Annualized EW mean return for the period is 14%, with a standard deviation of 23%.
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Figure 9. Excess returns R2E − R2V using historical data (1926-2014) and Bootstrapping sim-
ulation. After 10,000 simulations, annualized EW mean return for the period is 1.01%, with a
standard deviation of 3.41%.. In addition, the Sharpe ratio of the EWP is also higher than the
VWP (0.461 vs 0.457), and a positive skewness of 2.23.

Figure 10. Excess returns R2E − R2V using historical data (1926-2014) and curve fitting. After
10,000 runs, the EWP produced 1.03% more annual return than the VWP. The excess return has
a positive skewness of 0.14. In addition, the Sharpe ratio of the EWP is also higher than the VWP
(0.63 vs 0.58).
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Figure 11. Excess risk of EWP over VWP as d and e change. The excess risk is positive 99% of
the time and it varies from -2.18% to 4.37%, and has a mean of 1.15%, a median of 1.01%, and
a standard error of 0.01%. The excess risk is negative only when the large cap weight approaches
100% of the portfolio (shown in lower left part of the chart).

Figure 12. Excess Sharpe ratio of EWP over VWP. The excess Sharpe ratio is positive 63% of
the time and the average varies from 0.009 for small equal-weighting effect to 0.06 for large equal-
weighting effect. When e increases (move rightward on the x-axis), it means large cap weight is
increasing in the portfolio. In other words, the portfolio is deviating more from an equal-weight
portfolio. That means equal-weighting effect is going to be more noticeable. The average excess
Sharpe ratio for all the 10,000 simulations is 0.03. The 95% confidence interval of the mean excess
Sharpe ratio is between 0.0272 and 0.0331 with a t-stat of 20.
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Figure 13. Decomposition of excess returns R2E − R2V (x-axis) into return due to rebalancing
effect R2E − R2E NR (shown in lower bars) using equation (19), and return due to size effect
R2E NR − R2V (shown in upper bars) using equation (20). As shown in this figure, 85% of the
excess returns are due to rebalancing effect.

Figure 14. In aggregate, almost all the excess return R2E − R2V of 15.64% is due to the EWP
return R2E of 15.97% over VWP return R2V of 0.34%. In addition, almost all the excess return is
due to the rebalancing effect of 15.67%.
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Figure 15. Portfolio excess return results versus excess portfolio turnover using random prices test
as explained in section 4.1. As portfolio turns more EW from VW, portfolio turnover increases and
excess return also goes up. For every 1% increase in portfolio return, portfolio turnover increases
by 0.4669%. The mean portfolio turnover is 13.61% with a standard deviation of 25.35%.
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(1) Small cap and large cap returns N Mean(µ) Median Stdev (σ) L95 U95

Small cap monthly return (Russell 2000). 12/1992 to 12/2014 264 0.80% 1.60% 5.52% 0.13% 1.46%

Large cap monthly return (Russell 1000). 12/1992 to 12/2014 264 0.70% 1.17% 4.28% 0.18% 1.21%

(2) Equal-weight and Value-weight index returns

Equal-weighted CRSP monthly returns (01/1926 to 12/2014) 1,068 1.15% 1.41% 6.85% 0.74% 1.56%

Value-weighted CRSP monthly returns (01/1926 to 12/2014) 1,068 0.94% 1.30% 5.49% 0.61% 1.27%

Stock prices used in EW-VW portfolios (monthly data, 12/1926 to 12/2014)) 4,150,448

Relationship between datasets P -value F -stat R-Square Corr. (ρ) RL RS

Relationship between Russell 2000 and Russell 1000 0.00 603.73 0.70 0.84

Relationship between CRSP VW and CRSP EW 0.00 11,424 0.91 0.96

(3) Scenarios for large cap and small cap (based on Russell 2000 and 1000) N σL σS d Corr. (ρ) RL RS

All months from 10/1992 to 12/2014 264 4.27% 5.52% 1.24% 0.84 0.70% 0.80%

Years 2007 and 2008 24 5.24% 6.38% 1.14% 0.94 -1.74% -1.67%

All positive months 161 2.70% 3.03% 3.33% 0.55 2.95% 4.21%

All negative months 103 3.81% 3.86% 4.91% 0.78 -2.82% -4.54%

Years 2000 and 2001 24 5.36% 7.41% 2.05% 0.63 -0.85% 0.13%

Years 2009 to 2014 72 3.83% 5.19% 1.35% 0.93 1.12% 1.23%

Table 1. Summary statistics include the following.
(1) Russell 2000 and 1000 monthly stock returns from 12/1992 to 12/2014, as proxies for small cap and large cap.

(2) CRSP equal-weight and value-weight index returns from 01/1926 to 12/2014.

(3) Different scenarios tested on Russell 2000 and 1000 monthly stock returns from 12/1992 to 12/2014, as proxies for small

cap and large cap.
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Paired T-test for EWP and VWP

N Mean StDev SE Mean

R2E 10,000 0.13883 0.23613 0.00236

R2V 10,000 0.12869 0.21582 0.00216

R2E −R2V 10,000 0.01014 0.03405 0.00034

95% confidence interval for R2E −R2V (0.00947, 0.01081)

T-Test of mean of difference = 0 (vs. #0)

P-value: 0.000 T-value: 29.78

Table 2. Results of matching historical data using Bootstrapping simulation. Pair-wise summary
statistics of EW return R2E , VW return R2V , and excess return of EWP R2E−R2V show a positive
excess return. A p-value of 0.000 suggests that EW returns are statistically different to VW returns
using the data from years 1926 to 2014.

Paired T-test for EWP and VWP

N Mean StDev SE Mean

R2E 88 0.0572 0.2502 0.0267

R2V 88 0.0165 0.1931 0.0206

R2E −R2V 88 0.0407 0.0955 0.0102

95% confidence interval for R2E-R2V (0.0204, 0.0609)

T-Test of mean of difference = 0 (vs. #0)

P-value: 0.000 T-value: 3.99

Table 3. Constructed portfolio statistics of EW return R2E , VW return R2V , and excess return
of EWP R2E − R2V using the data from years 1926 to 2014. During this period EWPs produced
statistically significant excess annual return of 4.07%.
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Table 4. Summary of EW R2E , VW R2E , and excess returns R2E −R2V computed using all five
methods (i.e.: theoretical random prices, normally distributed returns, matching historical index
prices using Bootstrapping simulation, simulated returns using historical rates using curve fitting,
and actual portfolio construction). In all five methods, when compared to VWP returns, EWP
returns are higher and positive more number of times. In addition, Sharpe ratios are higher for
EWPs.
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