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Abstract
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the resulting portfolio is similar to a minimum variance portfolio subject to
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applications con�rm that ranking. All in all, equally-weighted risk contribu-
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1 Introduction
Optimal portfolio construction, the process of e�ciently allocating wealth among
asset classes and securities, has a longstanding history in the academic literature.
Over �fty years ago, Markowitz [1952, 1956] formalized the problem in a mean-
variance framework where one assumes that the rational investor seeks to maximize
the expected return for a given volatility level. While powerful and elegant, this
solution is known to su�er from serious drawbacks in its practical implementation.
First, optimal portfolios tend to be excessively concentrated in a limited subset of the
full set of assets or securities. Second, the mean-variance solution is overly sensitive to
the input parameters. Small changes in those parameters, most notably in expected
returns (Merton [1980]), can lead to signi�cant variations in the composition of the
portfolio.

Alternative methods to deal with these issues have been suggested in the lit-
erature, such as portfolio resampling (Michaud [1989]) or robust asset allocation
(Tütüncü and Koenig [2004]), but have their own disadvantages. On top of those
shortcomings, is the additional computational burden which is forced upon investors,
as they need to compute solutions across a large set of scenarios. Moreover, it can be
shown that these approaches can be restated as shrinkage estimator problems (Jo-
rion [1986]) and that their out-of-sample performance is not superior to traditional
ones (Scherer [2007a, 2007b]). Looking at the marketplace, it also appears that a
large fraction of investors prefers more heuristic solutions, which are computationally
simple to implement and are presumed robust as they do not depend on expected
returns.

Two well-known examples of such techniques are the minimum variance and the
equally-weighted portfolios. The �rst one is a speci�c portfolio on the mean-variance
e�cient frontier. Equity funds applying this principle have been launched in recent
years. This portfolio is easy to compute since the solution is unique. As the only
mean-variance e�cient portfolio not incorporating information on the expected re-
turns as a criterion, it is also recognized as robust. However, minimum-variance
portfolios generally su�er from the drawback of portfolio concentration. A simple
and natural way to resolve this issue is to attribute the same weight to all the assets
considered for inclusion in the portfolio. Equally weighted or "1/n" portfolios are
widely used in practice (Bernartzi and Thaler [2001], Windcli� and Boyle [2004])
and they have been shown to be e�cient out-of-sample (DeMiguel, Garlappi and
Uppal [2009]). In addition, if all assets have the same correlation coe�cient as well
as identical means and variances, the equally-weighted portfolio is the unique port-
folio on the e�cient frontier. The drawback is that it can lead to a very limited
diversi�cation of risks if individual risks are signi�cantly di�erent.

In this paper, we analyze another heuristic approach, which constitutes a middle-
ground stemming between minimum variance and equally-weighted portfolios. The
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idea is to equalize risk contributions from the di�erent components of the portfolio1.
The risk contribution of a component i is the share of total portfolio risk attributable
to that component. It is computed as the product of the allocation in component
i with its marginal risk contribution, the latter one being given by the change in
the total risk of the portfolio induced by an in�nitesimal increase in holdings of
component i. Dealing with risk contributions has become standard practice for
institutional investors, under the label of "risk budgeting". Risk budgeting is the
analysis of the portfolio in terms of risk contributions rather than in terms of portfolio
weights. Qian [2006] has shown that risk contributions are not solely a mere (ex-
ante) mathematical decomposition of risk, but that they have �nancial signi�cance
as they can be deemed good predictors of the contribution of each position to (ex-
post) losses, especially for those of large magnitude. Equalizing risk contributions is
also known as a standard practice for multistrategy hedge funds like CTAs although
they generally ignore the e�ect of correlation among strategies (more precisely, they
are implicitly making assumptions about homogeneity of the correlation structure).

Investigating the out-of-sample risk-reward properties of equally-weighted risk
contributions (ERC) portfolios is interesting because they mimic the diversification
e�ect of equally-weighted portfolios while taking into account single and joint risk
contributions of the assets. In other words, no asset contributes more than its peers
to the total risk of the portfolio. The minimum-variance portfolio also equalizes
risk contributions, but only on a marginal basis. That is, for the minimum-variance
portfolio, a small increase in any asset will lead to the same increase in the total
risk of the portfolio (at least on an ex-ante basis). Except in special cases, the
total risk contributions of the various components will however be far from equal,
so that in practice the investor often concentrates its risk in a limited number of
positions, giving up the bene�t of diversification. It has been shown repeatedly
that the diversi�cation of risks can improve returns (Fernholtz et al. [1998], Booth
and Fama [1992]). Another rationale for ERC portfolios is based on optimality
arguments, as Lindberg [2009] shows that the solution to Markowitz's continuous
time portfolio problem is given, when positive drift rates are considered in Brownian
motions governing stocks prices, by the equalization of quantities related to risk
contributions.

The ERC approach is not new and has been already exposed in some recent
articles (Neurich [2008], Qian [2005]). However, none of them is studying the global
theoretical issues linked to the approach pursued here. Note that the Most-Diversi�ed
Portfolio (MDP) of Choueifaty and Coignard [2008] shares with the ERC portfolio
a similar philosophy based on diversi�cation. But the two portfolios are generally
distinct, except when correlation coe�cient components is unique. We also discuss

1We have restricted ourselves to the volatility of the portfolio as risk measure. The ERC principle
can be applied to other risk measures as well. Theoretically, it is only necessary that the risk
measure is linear-homogeneous in the weights, in order for the total risk of the portfolio to be fully
decomposed into components. Under some hypotheses, this is the case for Value at risk for instance
(Hallerback [2003]).
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the optimality of the ERC portfolio within the scope of the Maximum Sharpe Ratio
(MSR) reinvestigated by Martellini [2008].

The structure of this paper is as follows. We �rst de�ne ERC portfolios and
analyze their theoretical properties. We then compare the ERC with competing
approaches and provide empirical illustrations. We �nally draw some conclusions.

2 De�nition of ERC portfolios
2.1 De�nition of marginal and total risk contributions
We consider a portfolio x = (x1, x2, ..., xn) of n risky assets. Let σ2

i be the variance of
asset i, σij be the covariance between assets i and j and Σ be the covariance matrix.
Let σ (x) =

√
x>Σx =

∑
i x

2
i σ

2
i +

∑
i

∑
j 6=i xixjσij be the risk of the portfolio.

Marginal risk contributions, ∂xi σ (x), are de�ned as follows:

∂xi σ (x) =
∂ σ (x)
∂ xi

=
xiσ

2
i +

∑
j 6=i xjσij

σ (x)

The adjective "marginal" quali�es the fact that those quantities give the change in
volatility of the portfolio induced by a small increase in the weight of one component.
If one notes σi (x) = xi × ∂xiσ (x) the (total) risk contribution of the ith asset, then
one obtains the following decomposition1:

σ (x) =
n∑

i=1

σi (x)

Thus the risk of the portfolio can be seen as the sum of the total risk contributions2.

2.2 Speci�cation of the ERC strategy
Starting from the de�nition of the risk contribution σi (x), the idea of the ERC
strategy is to �nd a risk-balanced portfolio such that the risk contribution is the
same for all assets of the portfolio. We voluntary restrict ourselves to cases without
short selling, that is 0 ≤ x ≤ 1. One reason is that most investors cannot take short
positions. Moreover, since our goal is to compare the ERC portfolios with other
heuristic approaches, it is important to keep similar constraints for all solutions to
be fair. Indeed, by construction the 1/n portfolio satis�es positive weights constraint
and it is well-known that constrained portfolios are less optimal than unconstrained
ones (Clarke et al., 2002). Mathematically, the problem can thus be written as
follows:

x? =
{

x ∈ [0, 1]n :
∑

xi = 1, xi × ∂xi σ (x) = xj × ∂xj σ (x) for all i, j
}

(1)
1The volatility σ is a homogeneous function of degree 1. It thus satis�es Euler's theorem and

can be reduced to the sum of its arguments multiplied by their �rst partial derivatives.
2In vector form, noting Σ the covariance matrix of asset returns, the n marginal risk contributions

are computed as: Σx√
x>Σx

. We verify that: x> Σx√
x>Σx

=
√

x>Σx = σ (x).
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Using endnote 2 and noting that ∂xi σ (x) ∝ (Σx)i,the problem then becomes:

x? =
{

x ∈ [0, 1]n :
∑

xi = 1, xi × (Σx)i = xj × (Σx)j for all i, j
}

(2)

where (Σx)i denotes the ith row of the vector issued from the product of Σ with x.

Note that the budget constraint
∑

xi = 1 is only acting as a normalization one.
In particular, if the portfolio y is such that yi× ∂yi σ (y) = yj × ∂yj σ (y) with yi ≥ 0
but

∑
yi 6= 1, then the portfolio x de�ned by xi = yi/

∑n
i=1 yi is the ERC portfolio.

3 Theoretical properties of ERC portfolios
3.1 The two-asset case (n = 2)

We begin by analyzing the ERC portfolio in the bivariate case. Let ρ be the correla-
tion and x = (w, 1− w) the vector of weights. The vector of total risk contributions
is:

1
σ (x)

(
w2σ2

1 + w(1− w)ρσ1σ2

(1− w)2σ2
2 + w(1− w)ρσ1σ2

)

In this case, �nding the ERC portfolio means �nding w such that both rows are equal,
that is w verifying w2σ2

1 = (1−w)2σ2
2. The unique solution satisfying 0 ≤ w ≤ 1 is:

x? =
(

σ−1
1

σ−1
1 + σ−1

2

,
σ−1

2

σ−1
1 + σ−1

2

)

Note that the solution does not depend on the correlation ρ.

3.2 The general case (n > 2)

In more general cases, where n > 2, the number of parameters increases quickly,
with n individual volatilities and n(n− 1)/2 bivariate correlations.

Let us begin with a particular case where a simple analytic solution can be
provided. Assume that we have equal correlations for every couple of variables,
that is ρi,j = ρ for all i, j. The total risk contribution of component i thus be-
comes σi (x) =

(
x2

i σ
2
i + ρ

∑
j 6=i xixjσiσj

)
/σ (x) which can be written as σi (x) =

xiσi

(
(1− ρ) xiσi + ρ

∑
j xjσj

)
/σ (x). The ERC portfolio being de�ned by σi (x) =

σj (x) for all i, j, some simple algebra shows that this is here equivalent3 to xiσi =
xjσj . Coupled with the (normalizing) budget constraint

∑
i xi = 1, we deduce that:

xi =
σ−1

i∑n
j=1 σ−1

j

(3)

3We use the fact that the constant correlation veri�es ρ ≥ − 1
n−1

.
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The weight allocated to each component i is given by the ratio of the inverse of
its volatility with the harmonic average of the volatilities. The higher (lower) the
volatility of a component, the lower (higher) its weight in the ERC portfolio.

In other cases, it is not possible to �nd explicit solutions of the ERC portfolio.
Let us for example analyse the case where all volatilities are equal, σi = σ for all i,
but where correlations di�er. By the same line of reasoning as in the case of constant
correlation, we deduce that:

xi =
(
∑n

k=1 xkρik)
−1

∑n
j=1

(∑n
k=1 xkρjk

)−1 (4)

The weight attributed to component i is equal to the ratio between the inverse of
the weighted average of correlations of component i with other components and
the same average across all the components. Notice that contrary to the bivariate
case and to the case of constant correlation, for higher order problems, the solution
is endogenous since xi is a function of itself directly and through the constraint
that

∑
i xi = 1. The same issue of endogeneity naturally arises in the general case

where both the volatilities and the correlations di�er. Starting from the de�nition
of the covariance of the returns of component i with the returns of the aggregated
portfolio, σix = cov

(
ri,

∑
j xjrj

)
=

∑
j xjσij , we have σi (x) = xiσix/σ (x). Now,

let us introduce the beta βi of component i with the portfolio. By de�nition, we
have βi = σix/σ2 (x) and σi (x) = xiβiσ (x) . The ERC portfolio being de�ned by
σi (x) = σj (x) = σ (x) /n for all i, j, it follows that:

xi =
β−1

i∑n
j=1 β−1

j

=
β−1

i

n
(5)

The weight attributed to component i is inversely proportional to its beta. The higher
(lower) the beta, the lower (higher) the weight, which means that components with
high volatility or high correlation with other assets will be penalized. Recall that
this solution is endogenous since xi is a function of the component beta βi which by
de�nition depends on the portfolio x.

3.3 Numerical solutions
While the previous equations (4) and (5) allow for an interpretation of the ERC
solution in terms of the relative risk of an asset compared to the rest of the portfolio,
because of the endogeneity of the program, it does not o�er a closed-form solution.
Finding a solution thus requires the use of a numerical algorithm.

In this perspective, one approach is to solve the following optimization problem
using a SQP (Sequential Quadratic Programming) algorithm:

x? = arg min f (x) (6)
u.c. 1>x = 1 and 0 ≤ x ≤ 1
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where:

f (x) =
n∑

i=1

n∑

j=1

(
xi (Σx)i − xj (Σx)j

)2

The existence of the ERC portfolio is ensured only when the condition f (x?) = 0
is veri�ed, i.e. xi (Σx)i = xj (Σx)j for all i, j. Basically, the program minimizes the
variance of the (rescaled) risk contributions.

An alternative to the previous algorithm is to consider the following optimization
problem:

y? = arg min
√

y>Σy (7)

u.c.
{ ∑n

i=1 ln yi ≥ c
y ≥ 0

with c an arbitrary constant. In this case, the program is similar to a variance min-
imization problem subject to a constraint of su�cient diversi�cation of weights (as
implied by the �rst constraint), an issue to which we will be back below. This prob-
lem may be solved using SQP. The ERC portfolio is expressed as x?

i = y∗i /
∑n

i=1 y∗i
(see Appendix A.2).

Our preference goes to the �rst optimization problem which is easier to solve
numerically since it does not incorporate a non-linear inequality constraint. Still,
we were able to �nd examples where numerical optimization was tricky. If a nu-
merical solution for the optimization problem (6) is not found, we recommend to
modify slightly this problem by the following: y? = arg min f (y) with y ≥ 0 and
1>y ≥ c with c an arbitrary positive scalar. In this case, the ERC portfolio is
x?

i = y∗i /
∑n

i=1 y∗i for f (y?) = 0. This new optimization problem is easier to solve
numerically than (6) because the inequality constraint 1>y ≥ c is less restrictive
than the equality constraint 1>x = 1. On its side, the formulation in (7) has the
advantage that it allows to show that the ERC solution is unique as far as the covari-
ance matrix Σ is positive-de�nite. Indeed, it is de�ning the minimization program
of a quadratic function (a convex function) with a lower bound (itself a convex func-
tion). Finally, one should notice that when relaxing the long-only constraint, various
solutions satisfying the ERC condition can be obtained.

3.4 Comparison with 1/n and minimum-variance portfolios
As stated in the introduction, 1/n and minimum-variance (MV) portfolios are widely
used in practice. ERC portfolios are naturally located between both and thus appear
as good potential substitutes for these traditional approaches.

In the two-assets case, the 1/n portfolio is such that w∗1/n = 1
2 . It is thus only

when the volatilities of the two assets are equal, σ1 = σ2, that the 1/n and the ERC
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portfolios coincide. For the minimum-variance portfolio, the unconstrained solution
is given by w∗mv =

(
σ2

2 − ρσ1σ2

)
/

(
σ2

1 + σ2
2 − 2ρσ1σ2

)
. It is straightforward to show

that the minimum-variance portfolio coincide with the ERC one only for the equally-
weighted portfolio where σ1 = σ2. For other values of σ1 and σ2, portfolio weights
will di�er.

In the general n-assets context, and a unique correlation, the 1/n portfolio is
obtained as a particular case where all volatilities are equal. Moreover, we can show
that the ERC portfolio corresponds to the MV portfolio when cross-diversi�cation is
the highest (that is when the correlation matrix reaches its lowest possible value)4.
This result suggests that the ERC strategy produces portfolios with robust risk-
balanced properties.

Let us skip now to the general case. If we sum up the situations from the point
of view of mathematical de�nitions of these portfolios, they are as follows (where
we use the fact that MV portfolios are equalizing marginal contributions to risk; see
Scherer, 2007b):

xi = xj (1/n)
∂xi σ (x) = ∂xj σ (x) (mv)
xi∂xi σ (x) = xj∂xj σ (x) (erc)

Thus, ERC portfolios may be viewed as a portfolio located between the 1/n and the
MV portfolios. To elaborate further this point of view, let us consider a modi�ed
version of the optimization problem (7):

x? (c) = arg min
√

x>Σx (8)

u.c.





∑n
i=1 ln xi ≥ c

1>x = 1
x ≥ 0

In order to get the ERC portfolio, one minimizes the volatility of the portfolio subject
to an additional constraint,

∑n
i=1 lnxi ≥ c where c is a constant being determined

by the ERC portfolio. The constant c can be interpreted as the minimum level
of diversi�cation among components which is necessary in order to get the ERC
portfolio5. Two polar cases can be de�ned with c = −∞ for which one gets the MV
portfolio and c = −n ln n where one gets the 1/n portfolio. In particular, the quantity∑

lnxi, subject to
∑

xi = 1, is maximized for xi = 1/n for all i. This reinforces the
interpretation of the ERC portfolio as an intermediary portfolio between the MV and
the 1/n ones, that is a form of variance-minimizing portfolio subject to a constraint
of su�cient diversi�cation in terms of component weights. Finally, starting from this

4Proof of this result may be found in Appendix A.1
5In statistics, the quantity −Pxi ln xi is known as the entropy. For the analysis of portfolio

constructions using the maximum entropy principle, see Bera and Park [2008]. Notice however that
the issue here studied is more speci�c.
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new optimization program, we show in Appendix A.3 that volatilities are ordered in
the following way:

σmv ≤ σerc ≤ σ1/n

This means that we have a natural order of the volatilities of the portfolios, with the
MV being, unsurprisingly, the less volatile, the 1/n being the more volatile and the
ERC located between both.

3.5 Optimality
In this paragraph, we investigate when the ERC portfolio corresponds to the Maxi-
mum Sharpe Ratio (MSR) portfolio, also known as the tangency portfolio in portfolio
theory, whose composition is equal to Σ−1(µ−r)

1>Σ−1(µ−r)
where µ is the vector of expected

returns and r is the risk-free rate (Martellini, 2008). Scherer (2007b) shows that the
MSR portfolio is de�ned as the one such that the ratio of the marginal excess return
to the marginal risk is the same for all assets constituting the portfolio and equals
the Sharpe ratio of the portfolio:

µ (x)− r

σ (x)
=

∂xµ (x)− r

∂xσ (x)

We deduce that the portfolio x is MSR if it veri�es the following relationship6:

µ− r =
(

µ (x)− r

σ (x)

)
Σx

σ (x)

We can show that the ERC portfolio is optimal if we assume a constant correlation
matrix and supposing that the assets have all the same Sharpe ratio. Indeed, with the
constant correlation coe�cient assumption, the total risk contribution of component
i is equal to (Σx)i /σ (x) . By de�nition, this risk contribution will be the same for
all assets. In order to verify the previous condition, it is thus enough that each
asset posts the same individual Sharpe ratio, si = µi−r

σi
. On the opposite, when

correlation will di�er or when assets have di�erent Sharpe ratio, the ERC portfolio
will be di�erent from the MSR one.

4 Illustrations
4.1 A numerical example
We consider a universe of 4 risky assets. Volatilities are respectively 10%, 20%,
30% and 40%. We �rst consider a constant correlation matrix. In the case of the
1/n strategy, the weights are 25% for all the assets. The solution for the ERC
portfolio is 48%, 24%, 16% and 12%. The solution for the MV portfolio depends on
the correlation coe�cient. With a correlation of 50%, the solution is xmv

1 = 100%.
With a correlation of 30%, the solution becomes xmv

1 = 89.5% and xmv
2 = 10.5%.

6Because we have µ (x) = x>µ, σ (x) =
√

x>Σx, ∂xµ (x) = µ and ∂xσ (x) = Σx/σ (x).
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When the correlation is 0%, we get xmv
1 = 70.2%, xmv

2 = 17.6%, xmv
3 = 7.8% and

xmv
4 = 4.4%. Needless to say, the ERC portfolio is a portfolio more balanced in terms

of weights than the mv portfolio. Next, we consider the following correlation matrix:

ρ =




1.00
0.80 1.00
0.00 0.00 1.00
0.00 0.00 −0.50 1.00




We have the following results:

• The solution for the 1/n rule is:
σ (x) = 11.5% xi ∂xi σ (x) xi × ∂xi σ (x) ci (x)

1 25% 0.056 0.014 12.3%
2 25% 0.122 0.030 26.4%
3 25% 0.065 0.016 14.1%
4 25% 0.217 0.054 47.2%

ci (x) = σi (x) /σ (x) is the risk contribution ratio. We check that the volatility
is the sum of the four risk contributions σi (x):

σ (x) = 0.014 + 0.030 + 0.016 + 0.054 = 11.5%

We remark that even if the third asset presents a high volatility of 30%, it
has a small marginal contribution to risk because of the diversi�cation e�ect
(it has a zero correlation with the �rst two assets and is negatively correlated
with the fourth asset). The two main risk contributors are the second and the
fourth assets.

• The solution for the minimum variance portfolio is:
σ (x) = 8.6% xi ∂xi σ (x) xi × ∂xi σ (x) ci (x)

1 74.5% 0.086 0.064 74.5%
2 0% 0.138 0.000 0%
3 15.2% 0.086 0.013 15.2%
4 10.3% 0.086 0.009 10.3%

We check that the marginal contributions of risk are all equal except for the
zero weights. This explains that we have the property ci (x) = xi, meaning
that the risk contribution ratio is �xed by the weight. This strategy presents
a smaller volatility than the 1/n strategy, but this portfolio is concentrated in
the �rst asset, both in terms of weights and risk contribution (74.5%).

• The solution for the ERC portfolio is:
σ (x) = 10.3% xi ∂xi σ (x) xi × ∂xi σ (x) ci (x)

1 38.4% 0.067 0.026 25%
2 19.2% 0.134 0.026 25%
3 24.3% 0.106 0.026 25%
4 18.2% 0.141 0.026 25%
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Contrary to the minimum variance portfolio, the ERC portfolio is invested in
all assets. Its volatility is bigger than the volatility of the MV but it is smaller
than the 1/n strategy. The weights are ranked in the same order for the ERC
and MV portfolios but it is obvious that the ERC portfolio is more balanced
in terms of risk contributions.

4.2 Real-life backtests
We consider three illustrative examples. For all of these examples, we compare
the three strategies for building the portfolios 1/n, MV and ERC. We build the
backtests using a rolling-sample approach by rebalancing the portfolios every month
(more precisely, the rebalancing dates correspond to the last trading day of the
month). For the MV and ERC portfolios, we estimate the covariance matrix using
daily returns and a rolling window period of one year.

For each application, we compute the compound annual return, the volatility
and the corresponding Sharpe ratio (using the Fed fund as the risk-free rate) of the
various methods for building the portfolio. We indicate the 1% Value-at-Risk and
the drawdown for the three holding periods: one day, one week and one month. The
maximum drawdown is also reported. We �nally compute some statistics measur-
ing concentration, namely the Her�ndahl and the Gini indices, and turnover (see
Appendix A.4). In the tables of results, we present the average values of these con-
centration statistics for both the weights (denoted as H̄w and Ḡw respectively) and
the risk contributions (denoted as H̄rc and Ḡrc respectively). Regarding turnover,
we indicate the average values of Tt across time. In general, we have preference for
low values of Ht, Gt and Tt. We now review the three sample applications.

Equity US sectors portfolio
The �rst example comes from the analysis of a panel of stock market sectoral indices.
More precisely, we use the ten industry sectors for the US market as calculated by
FTSE-Datastream. The sample period stems from January 1973 up to December
2008. The list of sectors and basic descriptive statistics are given in Table 1. During
this period, sectoral indices have trended upward by 9% per year on average. Apart
from two exceptions (Technologies on one side, Utilities on the other side), levels of
volatilities are largely similar and tend to cluster around 19% per year. Correlation
coe�cients are �nally displayed in the remaining colums. The striking fact is that
they stand out at high levels with only 3 among 45 below the 50% threshold. All
in all, this real-life example is characteristic of the case of similar volatilities and
correlation coe�cients.

Backtests results are summarized in Table 2. The performance and risk statistics
of the ERC portfolio are very closed to their counterpart for the 1/n one, which is
to be expected according to theoretical results when one considers the similarity in
volatilities and correlation coe�cients. Still, one noticeable di�erence between both
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Table 1: Descriptive statistics of the returns of US sector indices

Return Volatility Correlation matrix (%)
OILGS 11.9% 22.3% 100 64.7 58.4 51 55.5 54.2 44.7 57.1 51.3 43.7
BMATR 8.6% 21.1% 100 79.9 72.4 68.8 75.6 55.7 59.1 71.7 59.1
INDUS 10% 18.8% 100 77.4 77.1 85.7 65.2 58.8 80.3 75.2
CNSMG 7.2% 19.1% 100 69 78.6 57.2 53.5 69.6 64.2
HLTHC 11% 16.7% 100 78.7 60.2 60.4 72.4 60.3
CNSMS 7.8% 19.4% 100 64.8 56.5 79.9 74.6
TELCM 9.4% 19.7% 100 55.4 63.3 57.7
UTILS 9.7% 14.5% 100 60.1 41.4
FINAN 10% 19.7% 100 63.3
TECNO 7.9% 26.2% 100

Names (codes) of the sectors are as follows: Oil & Gas (OILGS), Basic Materials (BMATR), Indus-
trials (INDUS), Consumer Goods (CNSMG), Healthcare (HLTHC), Consumer Services (CNSMS),
Telecommunications (TELCM), Utilities (UTILS), Financials (FINAN), Technology (TECNO).

remains: while the ERC portfolio is concentrated in terms of weights (see H̄w and
Ḡw statistics), the 1/n competitor is more concentrated in terms of risk contributions
(H̄rc and Ḡrc). Notice that in both cases (weight or risk), the two portfolios appear
largely diversi�ed since average Her�ndahl and Gini statistics are small. Again, this
is due to the special case of similarity in volatilities and correlation coe�cients, as
will be clear later. In terms of turnover, the ERC portfolio is posting higher records
albeit remaining reasonable since only 1% of the portfolio is modi�ed each month.

Turning now to the comparison with the MV portfolio, we observe that the
ERC portfolio is dominated on a risk adjusted basis, due to the low volatility of
MV. Other risk statistics con�rm this feature. But the major advantages of ERC
portfolios when compared with MV lie in their diversi�cation, as MV portfolios post
huge concentration, and in a much lower turnover. The latter notably implies that
the return dominance of ERC is probably here underestimated as transaction costs
are omitted from the analysis.

Agricultural commodity portfolio
The second illustration is based on a basket of light agricultural commodities whom
list is given in Table 3. Descriptive statistics as computed over the period spanning
from January 1979 up to Mars 2008 are displayed in Table 3. Typically we are in a
case of a large heterogeneity in volatilities and similarity of correlation coe�cients
around low levels (0%-10%). Following the theoretical results of the previous sections,
we can expect the various components to get a weight roughly proportionally inverted
to the level of their volatility. This naturally implies more heterogeneity and thus
more concentration in weights than with the previous example and this is what seems
to happen in practice (see H̄w and Ḡw statistics, Table 4).
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Table 2: Statistics of the three strategies, equity US sectors portfolio

1/n mv erc
Return 10.03% 9.54% 10.01%
Volatility 16.20% 12.41% 15.35%
Sharpe 0.62 0.77 0.65

VaR 1D 1% −2.58% −2.04% −2.39%
VaR 1W 1% −5.68% −4.64% −5.41%
VaR 1M 1% −12.67% −10.22% −12.17%

DD 1D −18.63% −14.71% −18.40%
DD 1W −25.19% −17.76% −24.73%
DD 1M −30.28% −23.31% −28.79%
DD Max −49.00% −46.15% −47.18%

H̄w 0.00% 53.61% 0.89%
Ḡw 0.00% 79.35% 13.50%
T̄w 0.00% 5.17% 1.01%
H̄rc 0.73% 53.61% 0.00%
Ḡrc 13.38% 79.35% 0.00%

Table 3: Descriptive statistics of the agricultural commodity returns

Return Volatility Correlation matrix (%)
CC 4.5% 21.4% 100 2.7 4.2 61.8 51.6 13.9 4.6 9.3
CLC 17.2% 14.8% 100 31.0 4.5 3.5 2.5 0.8 3.7
CLH 14.4% 22.6% 100 7.0 5.9 5.0 -0.7 3.1
CS 10.5% 21.8% 100 42.8 16.2 6.3 10.4
CW 5.1% 23.7% 100 10.9 5.6 7.9
NCT 3.6% 23.2% 100 3.4 7.3
NKC 4.2% 36.5% 100 6.6
NSB −5.0% 43.8% 100

Names (codes) of the commodities are as follows: Corn (CC), Live Cattle (CLC), Lean Hogs (CLH),
Soybeans (CS), Wheat (CW), Cotton (NCT), Co�ee (NKC), Sugar (NSB).
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When compared with 1/n portfolios, we see that ERC portfolios dominate both
in terms of returns and risk. When compared with MV portfolios, ERC are dom-
inated on both sides of the coin (average return and volatility). However, this is
much less clear when one is having a look on drawdowns. In particular, ERC port-
folios seem more robust in the short run, which can be supposedly related to their
lower concentration, a characteristic which can be decisively advantageous with as-
sets characterized by large tail risk such as individual commodities.

Table 4: Statistics of the three strategies, agricultural commodity portfolio

1/n mv erc
Return 10.2% 14.3% 12.1%
Volatility 12.4% 10.0% 10.7%
Sharpe 0.27 0.74 0.49

VaR 1D 1% −1.97% −1.58% −1.64%
VaR 1W 1% −4.05% −3.53% −3.72%
VaR 1M 1% −7.93% −6.73% −7.41%

DD 1D −5.02% −4.40% −3.93%
DD 1W −8.52% −8.71% −7.38%
DD 1M −11.8% −15.1% −12.3%
DD Max −44.1% −30.8% −36.9%

H̄w 0.00% 14.7% 2.17%
Ḡw 0.00% 48.1% 19.4%
T̄w 0.00% 4.90% 1.86%
H̄rc 6.32% 14.7% 0.00%
Ḡrc 31.3% 48.1% 0.00%

The box plot graphs in Figure 1 represent the historical distribution of the weights
(top graphs) and risk contributions (bottom graphs) for the three strategies. Though
the 1/n portfolio is by de�nition balanced in weights, it is not balanced in terms of
risk contributions. For instance, a large part of the portfolio risk is explained by
the sugar (NSB) component. On the other hand, the MV portfolio concentrates its
weights and its risk in the less volatile commodities. As sugar (NSB) accounts for
less than 5% on average of portfolio risk, a large amount of total risk -slightly less the
40% on average- comes from the exposure in the live cattle (CLC). The ERC looks
as a middle-ground alternative both balanced in risk and not too much concentrated
in terms of weights.

Global diversi�ed portfolio
The last example is the most general. It covers a set representative of the major
asset classes whom list is detailed in Table 5. Data are collected from January 1995
to December 2008. Descriptive statistics are given in Table 5. We observe a large
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Figure 1: Statistics of the weights and risk contributions
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heterogeneity, both in terms of individual volatilities and correlation coe�cients.
This is thus the most general example.

Table 5: Descriptive statistics of the returns of asset classes
Return Volatility Correlation matrix(%)

SPX 6.8% 19.7% 100 85 45.5 42.4 3.5 58.5 25 16 -10.8 -18.7 19.8 27.3 7.2
RTY 6.5% 22% 100 42.1 38 4.2 54.6 26.3 18.6 -11.4 -20.9 18.7 22.7 7.8
EUR 7.9% 23.3% 100 83.2 21.6 52.2 53.5 36.2 14.8 -16 33.6 28 16.3
GBP 5.5% 20.7% 100 21.1 52.4 52.4 37.1 12.3 -15.1 35.4 27.8 20.3
JPY −2.5% 23.8% 100 14.4 28.4 49.5 15.3 -2.2 19.8 11.8 10.2

MSCI-LA 9.5% 29.8% 100 45.1 33.2 -1.4 -15 29.2 59.1 19.4
MSCI-EME 8.6% 29.2% 100 46.6 12 -13.3 34.5 29.4 18.5

ASIA 0.9% 22.2% 100 -2 -10.2 31.6 21.2 11.8
EUR-BND 7.9% 10.1% 100 29.6 4.8 5.3 9.1
USD-BND 7.4% 4.9% 100 8.6 12.3 -6.1
USD-HY 4.7% 4.3% 100 32.6 11.8
EMBI 11.6% 11% 100 9.3
GSCI 4.3% 22.4% 100

Names (codes) of the asset classes are as follows: S&P 500 (SPX), Russell 2000 (RTY), DJ Euro
Stoxx 50 (EUR), FTSE 100 (GBP), Topix (JPY), MSCI Latin America (MSCI-LA), MSCI Emerging
Markets Europe (MSCI-EME), MSCI AC Asia ex Japan (ASIA), JP Morgan Global Govt Bond Euro
(EUR-BND), JP Morgan Govt Bond US (USD-BND), ML US High Yield Master II (USD-HY), JP
Morgan EMBI Diversi�ed (EM-BND), S&P GSCI (GSCI).

Results of the historical backtests are summarized in Table 6 and cumulative
performances represented in �gure 2. The hierarchy in terms of average returns,
risk statistics, concentration and turnover statistics is very clear. The ERC portfolio
performs best based on Sharpe ratios and average returns. In terms of Sharpe ratios,
the 1/n portfolio is largely dominated7 by MV and ERC. The di�erence between
those last two portfolios is a balance between risk and concentration of portfolios.
Notice that for the ERC portfolio, turnover and concentration statistics are here
superior to the ones of the previous example, which corroborates the intuition that
these statistics are increasing functions of heterogeneity in volatilities and correlation
coe�cients.

5 Conclusion
A perceived lack of robustness or discomfort with empirical results have led investors
to become increasingly skeptical of traditional asset allocation methodologies that
incorporate expected returns. In this perspective, emphasis has been put on mini-
mum variance (i.e. the unique mean-variance e�cient portfolio independent of return
expectations) and equally-weighted (1/n) portfolios. Despite their robustness, both
approaches have their own limitations; a lack of risk monitoring for 1/n portfolios
and dramatic asset concentration for minimum variance ones.

7The dramatic drawdown of the 1/n portfolio in 2008 explains to a large extent this result.
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Table 6: Statistics of the three strategies, global diversi�ed portfolio

1/n mv erc
Return 7.17% 5.84% 7.58%
Volatility 10.87% 3.20% 4.92%
Sharpe 0.27 0.49 0.67

VaR 1D 1% −1.93% −0.56% −0.85%
VaR 1W 1% −5.17% −2.24% −2.28%
VaR 1M 1% −11.32% −4.25% −5.20%

DD 1D −5.64% −2.86% −2.50%
DD 1W −15.90% −7.77% −8.30%
DD 1M −32.11% −15.35% −16.69%
DD Max −45.32% −19.68% −22.65%

H̄w 0.00% 58.58% 9.04%
Ḡw 0.00% 85.13% 45.69%
T̄w 0.00% 4.16% 2.30%
H̄rc 4.33% 58.58% 0.00%
Ḡrc 39.09% 85.13% 0.00%

Figure 2: Cumulative returns of the three strategies for the Global Diversi�ed Port-
folio
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We propose an alternative approach based on equalizing risk contributions from
the various components of the portfolio. This way, we try to maximize dispersion
of risks, applying some kind of �1/n� �lter in terms of risk. It constitutes a special
form of risk budgeting where the asset allocator is distributing the same risk budget
to each component, so that none is dominating (at least on an ex-ante basis). This
middle-ground positioning is particularly clear when one is looking at the hierarchy
of volatilities. We have derived closed-form solutions for special cases, such as when
a unique correlation coe�cient is shared by all assets. However, numerical opti-
mization is necessary in most cases due to the endogeneity of the solutions. All in
all, determining the ERC solution for a large portfolio might be a computationally-
intensive task, something to keep in mind when compared with the minimum vari-
ance and, even more, with the 1/n competitors. Empirical applications show that
equally-weighted portfolios are inferior in terms of performance and for any measure
of risk. Minimum variance portfolios might achieve higher Sharpe ratios due to lower
volatility but they can expose to higher drawdowns in the short run. They are also
always much more concentrated and appear largely less e�cient in terms of portfolio
turnover.

Empirical applications could be pursued in various ways. One of the most promis-
ing would consist in comparing the behavior of equally-weighted risk contributions
portfolios with other weighting methods for major stock indices. For instance, in
the case of the S&P 500 index, competing methodologies are already commercialized
such as capitalization-weighted, equally-weighted, fundamentally-weighted (Arnott
et al. [2005]) and minimum-variance weighted (Clarke et al. [2002]) portfolios. The
way ERC portfolios would compare with these approaches for this type of equity
indices remains an interesting open question.
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A Appendix
A.1 The MV portfolio with constant correlation
Let R = Cn (ρ) be the constant correlation matrix. We have Ri,j = ρ if i 6= j and
Ri,i = 1. We may write the covariance matrix as follows: Σ = σσ> ¯ R. We have
Σ−1 = Γ¯R−1 with Γi,j = 1

σiσj
and

R−1 =
ρ11> − ((n− 1) ρ + 1) I

(n− 1) ρ2 − (n− 2) ρ− 1
.

With these expressions and by noting that tr (AB) = tr (BA), we may compute the
MV solution x =

(
Σ−11

)
/1>Σ−11. We have:

xi =
− ((n− 1) ρ + 1)σ−2

i + ρ
∑n

j=1 (σiσj)
−1

∑n
k=1

(
− ((n− 1) ρ + 1)σ−2

k + ρ
∑n

j=1 (σkσj)
−1

) .

Let us consider the lower bound of Cn (ρ) which is achieved for ρ = − (n− 1)−1. It
comes that the solution becomes:

xi =

∑n
j=1 (σiσj)

−1

∑n
k=1

∑n
j=1 (σkσj)

−1 =
σ−1

i∑n
k=1 σ−1

k

.

This solution is exactly the solution of the ERC portfolio in the case of constant
correlation. This means that the ERC portfolio is similar to the MV portfolio when
the unique correlation is at its lowest possible value.

A.2 On the relationship between the optimization problem (7) and
the ERC portfolio

The Lagrangian function of the optimization problem (7) is:

f (y;λ, λc) =
√

y>Σy − λ>y − λc

(
n∑

i=1

ln yi − c

)

The solution y? veri�es the following �rst-order condition:

∂yi (y;λ, λc) = ∂yi σ (y)− λi − λcy
−1
i = 0

and the Kuhn-Tucker conditions:
{

min (λi, yi) = 0
min (λc,

∑n
i=1 ln yi − c) = 0

Because ln yi is not de�ned for yi = 0, it comes that yi > 0 and λi = 0. We notice
that the constraint

∑n
i=1 ln yi = c is necessarily reached (because the solution can

not be y? = 0), then λc > 0 and we have:

yi
∂ σ (y)
∂ yi

= λc
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We verify that risk contributions are the same for all assets. Moreover, we remark
that we face a well know optimization problem (minimizing a quadratic function
subject to lower convex bounds) which has a solution. We then deduce the ERC
portfolio by normalizing the solution y? such that the sum of weights equals one.
Notice that the solution x? may be found directly from the optimization problem (8)
by using a constant c? = c− n ln (

∑n
i=1 y?

i ) where c is the constant used to �nd y?.

A.3 On the relationship between σerc, σ1/n and σmv

Let us start with the optimization problem (8) considered in the body part of the
text:

x? (c) = arg min
√

x>Σx

u.c.





∑n
i=1 ln xi ≥ c

1>x = 1
0 ≤ x ≤ 1

We remark that if c1 ≤ c2, we have σ (x? (c1)) ≤ σ (x? (c2)) because the constraint∑n
i=1 lnxi − c ≥ 0 is less restrictive with c1 than with c2. We notice that if c =

−∞, the optimization problem is exactly the MV problem, and x? (−∞) is the MV
portfolio. Because of the Jensen inequality and the constraint

∑n
i=1 xi = 1, we have∑n

i=1 lnxi ≤ −n ln n. The only solution for c = −n ln n is x?
i = 1/n, that is the 1/n

portfolio. It comes that the solution for the general problem with c ∈ [−∞,−n lnn]
satis�es:

σ (x? (−∞)) ≤ σ (x? (c)) ≤ σ (x? (−n ln n))

or:
σmv ≤ σ (x? (c)) ≤ σ1/n

Using the result of Appendix 1, it exists a constant c? such that x? (c?) is the ERC
portfolio. It proves that the inequality holds:

σmv ≤ σerc ≤ σ1/n

A.4 Concentration and turnover statistics
The concentration of the portfolio is computed using the Her�ndahl and the Gini
indices. Let xt,i be the weights of the asset i for a given month t. The de�nition of
the Her�ndahl index is :

ht =
n∑

i=1

x2
t,i,

with xt,i ∈ [0, 1] and
∑

i xt,i = 1. This index takes the value 1 for a perfectly
concentrated portfolio (i.e., where only one component is invested) and 1/n for a
portfolio with uniform weights. To scale the statistics onto [0, 1], we consider the
modi�ed Her�ndahl index :

Ht =
ht − 1/n

1− 1/n
.
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The Gini index G is a measure of dispersion using the Lorenz curve. Let X be a
random variable on [0, 1] with distribution function F . Mathematically, the Lorenz
curve is :

L (x) =

∫ x
0 θ dF (θ)∫ 1
0 θ dF (θ)

If all the weights are uniform, the Lorenz curve is a straight diagonal line in the
(x, L (x)) called the line of equality. If there is any inequality in size, then the
Lorenz curve falls below the line of equality. The total amount of inequality can be
summarized by the Gini index which is computed by the following formula:

G = 1− 2
∫ 1

0
L (x) dx.

Like the modi�ed Her�ndahl index, it takes the value 1 for a perfectly concentrated
portfolio and 0 for the portfolio with uniform weights. In order to get a feeling of
diversi�cation of risks, we also apply concentration statistics to risk contributions.
In the tables of results, we present the average values of these concentration statistics
for both the weights (denoted as H̄w and Ḡw respectively) and the risk contributions
(denoted as H̄rc and Ḡrc respectively).

We �nally analyze the turnover of the portfolio. We compute it between two
consecutive rebalancing dates with the following formula:

Tt =
n∑

i=1

|xt,i − xt−1,i|
2

.

Notice that this de�nition of turnover implies by construction a value of zero for the
1/n portfolio while in practice, one needs to execute trades in order to rebalance the
portfolio towards the 1/n target. However, apart in special circumstances, this e�ect
is of second order and we prefer to concentrate on modi�cations of the portfolio
induced by active management decisions.In the tables of results, we indicate the
average values of Tt across time. In general, we have preference for low values of Ht,
Gt and Tt.
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