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ABSTRACT

Limits to Arbitrage and Commodity Index
Investment

Yiqun Mou

The dramatic growth of commodity index investment over the last decade has caused a

heated debate regarding its impact on commodity prices among legislators, practitioners and

academics. This paper focuses on the unique rolling activity of commodity index investors in

the commodity futures markets and shows that the price impact due to this rolling activity

is both statistically and economically significant. Two simple trading strategies, devised

to exploit this market anomaly, yielded excess returns with positive skewness and annual

Sharpe ratios as high as 4.4 in the period January 2000 to March 2010. The profitability

of these trading strategies is decreasing in the amount of arbitrage capital employed in the

futures markets and increasing in the size of index funds’ investment relative to the total

size of futures markets. Due to the price impact, index investors forwent on average 3.6%

annual return, a 48% higher Sharpe ratio of the return, and billions of dollars over this

period.



Table of Contents

I Limits to Arbitrage and Commodity Index Investment: Front-Running

the Goldman Roll 1

1 Abstract 2

2 Introduction 3

2.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Commodity Index Investment 11

3.1 The Goldman Roll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Empirical Analysis 17

4.1 Preliminary Evidence of Price Impact . . . . . . . . . . . . . . . . . . . . . 18

4.2 Front-Running the Goldman Roll . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Performance of the Strategies . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Limits to Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Cost of the Price Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Conclusions 45

II Learning about Consumption Dynamics 52

6 Abstract 53

7 Introduction 54

i



8 The Environment 62

8.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.2 Information and learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.3 Initial beliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9 Time-series of subjective beliefs 67

9.1 State and parameter learning . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9.1.1 Beliefs about models and consumption dynamics . . . . . . . . . . . 74

10 Does learning matter for asset prices? 82

10.1 A new test for the importance of learning . . . . . . . . . . . . . . . . . . . 82

10.2 Learning from additional macro variables . . . . . . . . . . . . . . . . . . . 86

10.3 Additional asset pricing implications . . . . . . . . . . . . . . . . . . . . . . 92

10.3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11 Conclusion 105

12 Appendix 114

12.1 Existing literature and alternative approaches for parameter, state, and model

uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

12.2 Econometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

12.3 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12.4 Time-Averaging of Consumption Data and Model Probabilities . . . . . . . 120

12.5 Model solution and pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

ii



List of Figures

2.1 Related Plots of Crude Oil (WTI) Example . . . . . . . . . . . . . . . . . . 5

4.1 Average Roll Yields of Index Commodities over the 15-day Rolling Window 20

4.2 Average Roll Yield of Index Commodities over an Alternative 15-day Window 21

4.3 Average Roll Yield of Out-of-Index Commodities over the Rolling Window 22

4.4 Average Monthly Excess Returns of the Four Sector Portfolios with Strategy 1 29

4.5 Average Number of Spread Position Taken by Speculators . . . . . . . . . . 35

4.6 Value of Two Indices with Different Rolling Dates . . . . . . . . . . . . . . 40

4.7 Estimated Size of Index Investment and Loss due to Price Impact . . . . . 43

9.1 Evolution of Posterior Mean State Beliefs . . . . . . . . . . . . . . . . . . . 69

9.2 Mean Parameter Beliefs of the Volatility and Transition Probabilities . . . . 71

9.3 Speed of Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9.4 Marginal Model Probabilities under Different Priors . . . . . . . . . . . . . 73

9.5 Quarterly Expected Consumption Growth . . . . . . . . . . . . . . . . . . . 75

9.6 Quarterly Predictive Consumption Growth Standard Deviation . . . . . . . 77

9.7 Quarterly Predictive Consumption Growth Skewness . . . . . . . . . . . . . 79

9.8 Quarterly Predictive Consumption Growth Kurtosis . . . . . . . . . . . . . 81

10.1 Evolution of Mean State Beliefs with GDP . . . . . . . . . . . . . . . . . . 88

10.2 Uncertainty about state identification with/without GDP . . . . . . . . . . 89

10.3 Marginal Model Probabilities with GDP. . . . . . . . . . . . . . . . . . . . . 90

10.4 Conditional Expected Consumption Growth with GDP . . . . . . . . . . . . 91

iii



12.1 Model Probabilities and Time-Averaging of Consumption Data . . . . . . . 121

iv



List of Tables

3.1 Commodity Futures, Their Weights in SP-GSCI and DJ-UBSCI and Rolling

Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Commodities Futures out of the SP-GSCI and their Rolling Scheme . . . . 18

4.2 Summary Statistics of Monthly Excess Returns with Two Trading Strategies 26

4.3 Summary Statistics of Annualized Excess Returns in 2000-2010 . . . . . . . 28

4.4 Summary Statistics of Monthly Excess Returns with Two Strategies using

Out-of-Index Commodities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Regressions on the Trading Strategies’ Excess Returns 1 . . . . . . . . . . . 33

4.6 Regressions on the Trading Strategys’ Excess Returns 2 . . . . . . . . . . . 39

4.7 Summary Statistics of Two Indices with Different Rolling Periods . . . . . . 42

10.1 Updates in Beliefs versus Realized Stock Returns . . . . . . . . . . . . . . . 84

10.2 Updates in Beliefs versus Realized Stock Returns with GDP . . . . . . . . . 93

10.3 Asset Price Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.4 Dividend Yield Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.5 Real Risk-free Yield Volatilities . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.6 Return Forecasting Regressions . . . . . . . . . . . . . . . . . . . . . . . . . 104

12.1 Priors Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

v



Acknowledgments

It is difficult to overstate my appreciation to my advisors Michael Johannes and Lars

Lochstoer. I am grateful I had the opportunity to meet and work with them. They have

given me numerous supports and inspirations in my research. I really learned a lot from

them.

I am thankful to my committee chair Pierre Collin-Dufresne for his help and encouragement.

I am also grateful to Bjarni Torfason and seminar participants at Columbia University, Uni-

versity of Maryland, University of Wisconsin-Madison, Federal Reserve Board, University

of Hong Kong, Nanyang Technological University, Norwegian School of Economics and

Business Administration for helpful comments.

Special thanks be to my wife Qiqi Deng for her selflessly support. I could not get through

all the difficult times without your support and understanding. Also I wish to thank my

parents, Jianhua Mou and Aijuan Tan. Your unconditional love is the best thing I have

ever got in my life.

vi



To my parents Jianhua and Aijuan

my wife Qiqi and daughter Cindy

vii



1

Part I

Limits to Arbitrage and

Commodity Index Investment:

Front-Running the Goldman Roll



CHAPTER 1. ABSTRACT 2

Chapter 1

Abstract

The dramatic growth of commodity index investment over the last decade has caused a

heated debate regarding its impact on commodity prices among legislators, practitioners and

academics. This paper focuses on the unique rolling activity of commodity index investors in

the commodity futures markets and shows that the price impact due to this rolling activity

is both statistically and economically significant. Two simple trading strategies, devised

to exploit this market anomaly, yielded excess returns with positive skewness and annual

Sharpe ratios as high as 4.4 in the period January 2000 to March 2010. The profitability

of these trading strategies is decreasing in the amount of arbitrage capital employed in the

futures markets and increasing in the size of index funds’ investment relative to the total

size of futures markets. Due to the price impact, index investors forwent on average 3.6%

annual return, a 48% higher Sharpe ratio of the return, and billions of dollars over this

period.
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Chapter 2

Introduction

Arbitrage is the basis of the efficient market hypothesis, as in theory, rational arbitrageurs

can engage in risk-less arbitrage to quickly eliminate any market anomalies. In reality, arbi-

trage opportunities are often limited, because arbitrageurs are typically capital-constrained

and any arbitrage carries some risks. Recent literature on limits to arbitrage (Shleifer and

Vishny, 1997) shows that a market anomaly can persist for a long period due to slow-moving

arbitrage capital and the resulting delayed arbitrage, as summarized by Duffie (2010). While

previous empirical evidence of limits to arbitrage was often found in equity and bond mar-

kets, in this paper I find a significant and persistent market anomaly in the commodity

futures markets, which are attracting more and more attention from legislators, investors

and economists. The market anomaly arises due to the increasing size of commodity index

investment and its mechanical rolling forward of futures contracts.

Commodity index investment experienced dramatic growth over the last decade and

now constitutes a significant fraction of investment in commodity futures markets. When

commodity prices reached dizzying heights in mid-2008, the value of total long positions

held by index investors reached $256 billion, up from about $6 billion in 1999. At the

same time, the average estimated ratio of these long positions relative to total open interest

increased from 6.7% in 1999 to 44% in mid-2008 across 19 largest commodity markets that

this paper studies. After the commodity prices collapsed in the fall of 2008, commodity

index investment dropped, but it quickly recovered. The value of index investors’ long

positions increased from $112 billion at the end of 2008 to $211 billion at the end of 2009,
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and the average estimated market ratio also increased from 39% to 52%. While there has

been a heated debate on the impact of this surge in index investment on commodity price

levels1, little attention has been devoted to the impact on a separate, but quantitatively at

least as important, component of index funds’ returns called the ”roll yield”, which depends

on the slope of commodity futures curves2.

This paper documents that the mechanical rolling forward of futures contracts explicit

in index funds’ investment strategies exerts large and time-varying price pressure on the

futures curve in the largest commodity markets. The estimated losses incurred by index

investors as a group, due to this price-pressure and arbitrageurs’ front-running of their

trades, amounted to $26 billion over the period 2000 to 2009, compared to the estimated

total management fees of about $5 billion. Commodity index investors also forwent on

average 3.6% annual return and a 48% higher Sharpe ratio of returns over this period.

The Standard and Poor’s-Goldman Sachs Commodity Index (SP-GSCI) was the first

commercially available commodity index and is also most popular. The SP-GSCI rolls

futures forward from the fifth business day to the ninth business day of each month, and

its rolling activity is usually called the Goldman roll by practitioners. To help understand

the Goldman roll and its impact, I use crude oil (WTI) as an example and look at a 15-

business-day window ending on February 13, 2001. The SP-GSCI rolled the futures of crude

oil (WTI) forward from February 7 to February 13 by shorting the March contracts and

longing the April contracts. Panel A of 2.1 shows the term structure of crude oil (WTI)

futures on February 7, 2001. As we can see, the slope was negative, which means contracts

with shorter maturities were trading at premiums. This kind of term structure is called

in backwardation by the literature. Because the March contract was more expensive, by

shorting the March contract at $31.27 and longing the April contract at $30.98, the SP-GSCI

1See Singleton (2010), Master and White (2008), Buyuksahin et al. (2008), Buyuksahin and Harris

(2009), Hamilton (2009), Kilian (2009), Stoll and Whaley (2010).

2Unlike equity index funds which invest directly in the underlying assets, commodity index funds obtain

commodity price exposure by entering long positions in commodity futures contracts. In order to maintain

the long exposure, the funds need to unwind the maturing contracts before they expire and initiate new

long positions in contracts that have later maturity dates. The roll yield refers to the difference between log

price of the maturing contract they roll from and the deferred contract they roll into.



CHAPTER 2. INTRODUCTION 5

got a positive roll yield ln(31.27/30.98) = 0.93%.
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Figure 2.1: Related Plots of Crude Oil (WTI) Example

Panel B of 2.1 shows how the prices of the March and April contracts moved during the

15-day window. Although the two contracts shared the same general price pattern, their

prices were much closer during the rolling period. The difference between the prices of two

contracts is called the spread. As shown in Panel C and Panel D, the spreads and roll yields

were much lower in the rolling period. More importantly, we can clearly observe a large

$0.31 drop in spread and a 1.1% drop in roll yield when entering the rolling period. This

suggests that due to the large size of index investment, the shorting demand exerted by the

Goldman roll caused the March contract to be temporarily underpriced, and the longing

demand caused the April contract to be temporarily overpriced. The resulting price impact
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also caused the roll yield to drop.

The plots also indicate how this mispricing due to the price impact could be easily

exploited by long-short strategies similar to those used in the equity market. For example,

on January 24, we can short the March contract at $29.05, anticipating that it would be

relatively underpriced after 10 business days. At the same time, we long the April contract

at $28.31, expecting it to be relatively overpriced when the Goldman roll happens. In this

way, we create a calendar spread position with net value equal to the spread $0.74, and

our long-short spread position is not exposed to the change in absolute price level of crude

oil. After the mispricing happens on February 7 due to the Goldman roll, we unwind the

positions by longing the March contract and shorting the April contract to exactly offset

the positions of the SP-GSCI, paying the spread $0.29. This front-running strategy profits

from the drop in the spread $0.74−$0.29=$0.45, and if we post full collateral for the spread

position: $28.68 (=$29.05+$28.31
2 ), the strategy yields an unleveled excess return of 1.57% in

10 business days. In the real world, initiating such a spread position only requires 2-3%

margin of the nominal value, so the strategy can be easily implemented with very high

leverage. As indicated by the plots, this front-running strategy can still yield high excess

returns even if we initiate our positions just a few days before the Goldman roll.

I focus on 19 commodities in the SP-GSCI that are traded on US exchanges. These

commodities are very representative, because they have the largest and also the most liquid

commodity futures markets, with a total weight of 93.22% in the SP-GSCI in 2010. The

sample period is from January 1980 to March 2010. The year 2000 is set as a cut-off point,

because index investment was nonexistent or very small (less than $6 billion) before 2000.

Two simple trading strategies, like the one above, are designed to exploit the price impact.

The only difference is that Strategy 1 front-runs the Goldman roll by 10 business days, and

Strategy 2 front-runs it by just 5 business days. In the example above, Strategy 1 would

initiate spread positions from January 24 to January 30, and Strategy 2 would initiate

positions from January 31 to February 6. Both strategies unwind positions from February

7 to February 13, when the SP-GSCI rolls futures forward.

The 19 commodities are grouped in sectors to form 4 equally weighted sector portfolios

(agriculture, livestock, energy and metals) and one total portfolio. In the period 1980-
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1999, the portfolios’ Sharpe ratios were typically low or negative. However, in the period

2000-2010, both strategies yielded very high abnormal returns. Under the assumption

that capital was invested in risk-free assets when it was not utilized for the strategies, the

annualized Sharpe ratios ranged from 1.09 to 2.75 with Strategy 1, and ranged from 0.46

to 1.78 with Strategy 2. More importantly, the excess returns were positively skewed for

most portfolios, with a maximum skewness of 2.23 with Strategy 1 and 2.45 with Strategy

2. Energy sector is overall the best performing sector. With Strategy 1, the energy portfolio

has unleveled annual excess return of 4.43%, with annual Sharpe ratio of 2.2, skewness of

0.88 and maximum drawdown of 0.94%. From the perspective of a money manager who

has multiple trading opportunity and who only cares about performance in the trading

periods, the annualized Sharpe ratios ranged from 2.0 to 3.99 with Strategy 1, and ranged

from 1.16 to 4.39 with Strategy 2. Besides the metals portfolio, the mean of unlevered

annual excess returns ranged from 7.8% to 10.5% with Strategy 1, and ranged from 5.2%

to 10.8% with Strategy 2. A closer examination of the strategies’ performance reveals that

the exact choice of cut-off year is not important. For the energy and livestock portfolios,

the strategies’ excess returns were mostly positive as early as 1992, right after the launch

of the SP-GSCI in November 1991.

When the same strategies are applied to 18 commodities not included in the SP-GSCI,

there were no abnormal returns earned in either period. The annualized Sharpe ratios of

similar portfolios were either negative or very small, with a maximum of 0.31. Results

from panel regressions show that the average excess returns with both strategies were not

significantly different from 0 for either commodities out of the SP-GSCI over the full sample

period, or commodities in the SP-GSCI before the launch of the index (or the commodities’

inclusion into the SP-GSCI). After the commodities were included in the SP-GSCI, the

average excess return was 0.35% with Strategy 1 in 10 days and 0.24% with Strategy 2 in

5 days. Both are statistically significant at the 1% level.

All information about the Goldman roll is publicly available. What is more, compared

to the equity and bond markets, there are fewer barriers to arbitrage in commodity futures

markets. There is no short-sell constraint. Anyone can enter into both long and short

positions freely. High leverage can be easily obtained by the low margin requirements. The
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commodities in the SP-GSCI have very liquid futures markets, and the contracts involved in

the Goldman roll are also the most liquid contracts in each commodity market. If the market

was well arbitraged, we would not observe this market anomaly, because arbitrageurs would

quickly eliminate the price impact. However, the performance of the strategies suggests

that this market anomaly has persisted for a long period and arbitrage capital can be

slow-moving.

CFTC’s Commitment of Traders (COT) reports publish the number of positions held

by different traders in commodity futures market from 1986. I find little increase in the

number of spread positions held by speculators before 2004 in the 17 commodities’ futures

markets that have data available, which indicates that very few arbitrageurs were exploiting

the market anomaly before 2004. It could be due to the inattention of arbitrageurs to

commodity markets and thus their unawareness of this market anomaly. However, the

number of spread positions held by speculators has experienced a dramatic jump since 2004

in all 17 commodity markets, most more than 5-fold. It suggests that as commodity markets

and commodity index investment gained more attention from the investment community,

arbitrageurs were getting aware of the market anomaly, and more arbitrage capital was

utilized to exploit the price impact. Consistent with the limits to arbitrage theory, the

paper shows that the performances of front-running strategies are significantly related to

the net forces of the size of index investment and size of arbitrage capital utilized to take

advantage of the market anomaly. The arbitrage profit is lower when there is a reduction

in index investment or an increase in arbitrage capital.

The remainder of the introduction relates the paper to the literature. Section 2 describes

some facts about commodity index investment and the Goldman roll. Section 3 presents

the empirical analysis. Section 4 concludes.

2.1 Related Literature

There is a large literature on limits to arbitrage, as summarized by Shleifer (2000), Barberis

and Thaler (2001) and Duffie (2010). In theory, arbitrageurs often have to bear three kinds

of risks: fundamental risk (Shleifer and Vishny, 1997), noise trader risk (Delong et al.,
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1990) and synchronization risk (Abreu and Brunnermeier, 2002). These risks can prevent

arbitrageurs from eliminating a market anomaly quickly and thus cause delayed arbitrage.

Duffie (2010) proposed that arbitrageurs’ inattention can also cause slow-moving arbitrage

capital and delayed arbitrage. In this paper, I contribute an empirical example of limits

to arbitrage in commodity futures markets. Here, there are two possible explanations for

the persistence of the market anomaly. One is the limited knowledge of the existence of

the market anomaly, which is consistent with the theory of inattentive arbitrageurs. The

anomaly can also persist due to the fundamental risk involved in the arbitrage. Although

the mispriced futures contracts have the same underlying commodity, they are still not

perfect substitutes for each other because their maturities are different. The fundamental

value of this partially hedged portfolio might change due to exogenous demand shocks or a

supply crunch, which could lead to a loss for arbitrageurs. The concern of this fundamental

risk may delay the action of arbitrageurs, especially when the price impact of commodity

index investment was not large enough.

Many empirical studies on limits to arbitrage focus on the effects of index investment in

the equity market. First is the inclusion effect. Petajisto (2010) shows that in the period

1990-2005, prices increased an average 8.8% around the event for stocks added to the S&P

500, and dropped -15.1% if the stocks are deleted from the index3. The effect generally

grew with the size of index fund assets. Second, Morck and Yang (2001) and Cremers,

Petajisto and Zitzewitz (2010) find significantly large price premiums attached to index

membership. Third, Kaul, Mehrotra and Morck (2000) show that when the index increased

the weights of stocks, prices experienced significant increases during the event week with no

reversal afterwards, even when the adjustment was previously announced. In this paper, I

extend the research into commodity markets, and find that commodity index investors get

significantly lower roll yields due to the price impact of their mechanical rolling activity.

The paper is also related to a classic theory called the Theory of Normal Backwarda-

tion (Keynes (1930), Hicks (1939) and Cootner (1967)) in commodity markets. The theory

emphasizes the interaction between hedgers and speculators. In the theory, the commod-

3Other studies of this effect include Harris and Gurel (1986), Shleifer (1986), Lynch and Mendenhall

(1997), Chen, Noronha and Singal (2004), and many others.
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ity producers are typically the hedgers and short futures contracts due to risk aversion.

Speculators earn a risk premium by taking long positions to meet the hedging demand of

producers. Empirical evidence4 shows that the risk premium is higher when the producers’

hedging demand is higher. Commodity indices were originally designed to capture this risk

premium, so index investors are often called index speculators. However, in this paper,

index investors are actually the hedgers. Because the commodity index funds and banks

selling swaps have to follow the exact rolling rules of the indices they track in order to fully

hedge themselves, they have great hedging demand when they roll futures contracts forward.

By meeting this hedging demand, speculators could earn very high excess returns. Hirsh-

leifer’s (1988, 1990) theoretical models indicate that in equilibrium a friction to investing in

commodity futures must exist for the hedging demand to affect prices. Bessembinder and

Lemmon (2002) model this friction as the absence of storage in electricity markets, while

Acharya, Lochstoer and Ramadorai (2010) model the friction as the limit on the risk-taking

capacity of speculators. Here, the friction arises from the restriction of index investors to

follow fixed rolling rules, which are publicly known.

4See Carter, Rausser and Schmitz (1983), Chang (1985), Bessembinder (1992), de Roon, Nijman and

Veld (2000) and Acharya, Lochstoer and Ramadorai (2010).



CHAPTER 3. COMMODITY INDEX INVESTMENT 11

Chapter 3

Commodity Index Investment

Commodity index investment has become increasingly popular among institutional and in-

dividual investors in recent years. The first commercially available commodity index was

launched at the end of 1991, and now there are hundreds of different indices. Institutional

investors, such as pension funds and endowment funds, usually enter into over-the-counter

(OTC) commodity index swaps with big banks. In a typical commodity index swap, the

institutional investor pays the 3-month Treasury-bill rate plus a management fee to a Wall

Street bank, and the bank pays the total return on a particular commodity index. The

management fee ranges from 0.5% to 1% per year depending on the index and nominal

amount. Institutional investors can also put their funds under the management of a com-

modity index fund, which tracks a particular index. For individual investors, the main

investment channel is to buy exchanged-traded funds (ETFs) and notes (ETNs) which are

tied to particular indices. The management fees associated with ETFs or ETNs are typi-

cally higher than the fees of swaps. Like other index investors, commodity index investors

are usually long-term investors and mostly passive in the sense that there is no attempt

to time the market or identify under-priced commodities. Most of the indices only take

long positions in futures contracts1, and all the positions are fully collateralized, with the

collateral invested in 3-month Treasury bills.

1Starting from 2006, some new commodity indices take both long and short positions depending on the

term structures and other factors, like the Morningstar long and short commodity index. However, the

majority of commodity indices still only take long positions.
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The Standard and Poor’s-Goldman Sachs Commodity Index (SP-GSCI) and the Dow

Jones-UBS Commodity Index (DJ-UBSCI) are the two most popular commodity indices

and used as industry benchmarks. According to Masters and White (2008), the estimated

market share was approximately 63% for the SP-GSCI and 32% for the DJ-UBSCI in 2008.

The SP-GSCI was the first commercially available commodity index and was launched in

November 1991. It includes 24 commodities now, and the composition has remained the

same since 2002. The DJ-UBSCI was launched in July 1998 and includes 19 commodities,

18 of which it shares with the SP-GSCI. The weighting schemes of the two indices are

different. The weights in the SP-GSCI are primarily based on the delayed five-year rolling

averages of world production quantities, while the DJ-UBSCI chooses weights based on

liquidity and world production values, where liquidity is the dominant factor2. Since the

SP-GSCI is the most popular index and includes almost all commodities in the DJ-UBSCI

and other indices, I will focus on the 19 commodities in the SP-GSCI that are traded on US

exchanges3. These commodities also have the largest futures markets, and will be referred

to as index commodities. 3.1 lists these commodities and their weights in the two indices

in 20104. The aggregate weights of the 19 commodities are 93.44% in the SP-GSCI and

78.21% in the DJ-USBCI in 2010, so they are very representative. As shown in Table 1,

the SP-GSCI is heavily weighted on the energy sector, with a total weight of 69.25% and a

crude oil weight of 50.05%. The weights in the DJ-UBSCI are more evenly dispersed, and

the total energy weight is only 33%.

2The DJ-UBSCI also impose lower bound of 2% for individual weight and upper bound of 33% for sector

weight.

3I exclude six industrial metals that are traded on London Metal Exchange (LME), because the maturity

structure of the futures contracts listed on LME is very different from that in US. The maturities of these

futures contracts range from one day to 3 months consecutively. It is not clear which contracts these indices

choose and how they roll the contracts forward.

4The weights are taken in 2010. The index committee may revise the weights depending on various factors

each year, so the weights in previous years can be different from the current weights, but the differences are

not very big.
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Trading Commodity SP-GSCI DJ-UBSCI Futures Maturity of contracts at Month Begin

Facility (Contracts) Weights Weights Since 1 2 3 4 5 6 7 8 9 10 11 12

Agriculture (8 Commodities)

ICE Cocoa 0.36% 0.0% 1964.12 H H K K N N U U Z Z Z H

ICE Coffee ”C” 0.78% 2.56% 1972.08 H H K K N N U U Z Z Z H

CBOT Corn 3.99% 7.09% 1964.12 H H K K N N U U Z Z Z H

ICE Cotton #2 0.96% 2.00% 1964.12 H H K K N N Z Z Z Z Z H

CBOT Soybean 2.77% 7.91% 1964.12 H H K K N N X X X X F F

ICE Sugar #11 1.92% 2.89% 1964.12 H H K K N N V V V H H H

KBOT Wheat (Kansas) 0.86% 0.0% 1970.01 H H K K N N U U Z Z Z H

CBOT Wheat 4.05% 4.70% 1964.12 H H K K N N U U Z Z Z H

Livestock (3 Commodities)

CME Feeder Cattle 0.56% 0.0% 1972.03 H H J K Q Q Q U V X F F

CME Lean Hogs 1.54% 2.10% 1966.02 G J J M M N Q V V Z Z G

CME Live Cattle 3.01% 3.55% 1964.12 G J J M M Q Q V V Z Z G

Energy (6 Commodities)

ICE Crude Oil (Brent) 13.14% 0.0% 1989.07 H J K M N Q U V X Z F G

NYMEX Crude Oil (WTI) 36.91% 14.34% 1983.03 G H J K M N Q U V X Z F

ICE Gasoil 4.78% 0.0% 1986.06 G H J K M N Q U V X Z F

NYMEX Gasoline (RBOB) 4.56% 3.53% 1984.12 G H J K M N Q U V X Z F

NYMEX Heating Oil #2 4.54% 3.58% 1978.11 G H J K M N Q U V X Z F

NYMEX Natural Gas 5.32% 11.55% 1990.04 G H J K M N Q U V X Z F

Metals (2 Commodities)

NYMEX Gold 2.86% 9.12% 1974.12 G J J M M Q Q Z Z Z Z G

NYMEX Silver 0.31% 3.29% 1964.12 H H K K N N U U Z Z Z H

F: January G: February H: March J: April K: May M: June N: July Q: August U: September V: October X: November Z: December

Table 3.1: Commodity Futures, Their Weights in SP-GSCI and DJ-UBSCI and Rolling Scheme
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Commodity index investments give investors exposure to commodity prices. There is

both academic and industry research that suggests that even when a commodity index

may be a poor stand-alone investment, it is still desirable because of the hedging against

inflation and the diversification benefit added to the investors’ total portfolio. Gorton

and Rouwenhorst (2006) find that over the period between July 1959 and March 2004,

the returns of investing in commodity futures were negatively correlated with equity and

bond returns, but positively correlated with inflation. Based on the examination of asset

class data from 1970 to 2004, Idzorek (2006) shows that by adding commodity indices to the

portfolio, the average improvement in historical return at each risk level (standard deviation

range of approximately 2.4% to 19.8%) was approximately 1.33%, with a maximum of 1.88%.

However, a recent study by Tang and Xiong (2010) find that with the boom of commodity

index investments, commodity prices have been increasingly exposed to market-wide shocks,

and shocks to other commodities, such as oil. Therefore, it is unknown whether or not the

diversification benefit of commodity index investment is sustainable in the future.

3.1 The Goldman Roll

Since futures contracts have expiration dates, to maintain the long exposure to commodity

prices, commodity indices need to roll the positions forward, i.e., by closing the long po-

sitions in the maturing contracts and initiating new long positions in contracts that have

later maturity dates. 3.1 shows the rolling scheme of the SP-GSCI by listing the maturities

of the futures contracts held by the index on the first business day of each calendar month.

If the index holds different contracts at the beginnings of two consecutive months, it means

that the index rolls futures forward in the first month. For example, the SP-GSCI holds

the March and May wheat contracts at the beginning of February and March respectively,

so the index rolls the wheat futures forward in February by closing the March contracts

and initiating the May contacts. Since the liquidity of contracts drops very quickly as the

maturity increases, commodity indices usually hold contracts with short maturities. Differ-

ent commodities have different rolling frequencies. Agricultural commodities are typically

rolled forward 4 or 5 times a year. The livestock commodities are rolled forward a bit more
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frequently, 6 to 8 times a year. The SP-GSCI rolls the energy commodities every month.

Gold and silver are rolled forward 5 times a year. The rolling scheme of the DJ-UBSCI

is the same for most commodities except energy commodities, which the DJ-UBSCI rolls

every two months.

In the rolling month, both the SP-GSCI and DJ-UBSCI have a rolling period of 5

business days. The SP-GSCI starts on the fifth business day of the month, and ends on

the ninth business day, while the DJ-UBSCI rolls from the sixth business day to the tenth

business day, so the rolling periods of the two indices greatly overlap. Many other indices

and ETFs also roll in this period, like the former Lehman Brothers Commodity Index and

the largest crude oil ETF: United States Oil Fund (USO). On each day in the rolling period,

both indices roll forward 20% of the positions for commodities that need to be rolled. Since

the DJ-UBSCI’s rolling rules are mostly the same as the SP-GSCI and the SP-GSCI is much

more popular, in the following empirical analysis, I will focus on the rolling activity of the

SP-GSCI, which is called the Goldman roll by practitioners.

The total excess return of investing in futures consists of spot return and roll yield.

Spot return captures the price change of the futures contracts that investor holds. Roll

yield (also called roll return) captures the slope of futures curve when investors roll futures

forward. From now on, the contracts held by the SP-GSCI will be referred to as the maturing

contracts, and the contracts that the SP-GSCI rolls into will be referred to as the deferred

contracts. Suppose the price of the maturing contract is Ft,T1 at time t with maturity T1,

and Ft,T2 is the price of the deferred contract with maturity T2, where T2 > T1. The roll

yield is defined as

Roll Y ield = ln(Ft,T1)− ln(Ft,T2) (1)

When the maturing contract is more expensive Ft,T1 > Ft,T2 , the term structure is

usually called in backwardation and the roll yield is positive. When the maturing contract

is at a discount Ft,T1 < Ft,T2 , the term structure is called in contango and the roll yield is

negative.

Historically, the roll yield is an important component of the total excess return. Anson

(1998) shows that the roll yield provided most of commodity investments’ total excess
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return in the period between 1985 and 1997, and in the case of the SP-GSCI, the average

annual roll yield was 6.11% while the average spot return was -0.08%. Nash (2001) and

Feldman and Till (2006) find that from 1983 to 2004, whether a commodity was in structural

backwardation or not largely determined its returns, and roll yield has been the dominant

driver of commodity futures returns.
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Chapter 4

Empirical Analysis

The daily prices for individual commodity’s futures contracts are obtained from the Com-

modity Research Bureau (CRB) and the full sample period is from January 2, 1980 to

March 31, 20101. In the following analysis, the year 2000 is often set as a cutoff point, since

commodity index investment was nonexistent or very small (less than $6 billion) before

20002. To facilitate the analysis, I form a control group using 18 commodities not included

in the SP-GSCI with futures trading on US exchanges since 2005 or earlier. These com-

modities will be referred to as out-of-index commodities. I apply a similar rolling scheme

as the SP-GSCI by matching the sector and maturity structures of futures markets. The

rolling periods of these commodities are exactly the same as the SP-GSCI. 4.1 lists the com-

modities in this control group3 and the rolling scheme. Many commodities in the control

1I exclude the sample before 1980 due to the following considerations. First, there could be some potential

structural changes in commodity futures markets, so the data further back may not be so relevant. Second,

the SP-GSCI is heavily weighted on energy sector, and the first energy commodity futures (heating oil)

started trading at the end of 1979. Third, I check the empirical analysis using all available data and the

results are very similar. The results using whole history are available upon request.

2The exact choice of the cutoff point is not important, and would not change the results.

3The soybean oil is actually included in the DJ-UBSCI and some smaller indices, but the weight is very

low. The orange juice is also included in some smaller indices. The copper here is traded on NYMEX, so

it is not the same contract which the SP-GSCI and DJ-USBCI hold. I put milk and butter in the livestock

sector because they are produced by livestock and I can have more than one commodity in livestock sector

when I form sector portfolios later.
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Trading Commodity Futures Data Maturity of contracts at Month Begin

Facility (Contracts) Period 1 2 3 4 5 6 7 8 9 10 11 12

Agriculture (8 Commodities)

CME Lumber 1969.10–2010.3 H H K K N N U U X X F F

CBOT Oats 1959.7–2010.3 H H K K N N U U Z Z Z H

ICE Orange Juice 1967.2–2010.3 H H K K N N U U X X F F

CBOT Rough Rice 1986.8–2010.3 H H K K N N U U X X F F

CBOT Soybean Meal 1959.7–2010.3 H H K K N N V V V F F F

CBOT Soybean Oil 1959.7–2010.3 H H K K N N V V V F F F

ICE Sugar #14 1985.7–2008.2 H H K K N N U U X X F F

MGEX Wheat, Spring 1970.1–2010.3 H H K K N N U U Z Z Z H

Livestock (3 Commodities)

CME Butter 1996.9–2010.3 G H K K N N U U V Z Z G

CME Milk, Class III 1996.1–2010.3 G J J M M N U U Z Z Z G

CME Pork Bellies 1966.2–2010.3 G H K K N N Q G G G G G

Energy (4 Commodities)

NYMEX Coal 2001.7–2010.3 G H J K M N Q U V X Z F

NYMEX Electricity, PJM 2003.4–2010.3 G H J K M N Q U V X Z F

CBOT Ethanol 2005.3–2010.3 G H J K M N Q U V X Z F

NYMEX Propane 1987.8–2009.9 G H J K M N Q U V X Z F

Metals (3 Commodities)

NYMEX Copper 1959.7–2010.3 G H J K M N Q U V X Z F

NYMEX Palladium 1977.1–2010.3 H H M M M U U U Z Z Z H

NYMEX Platinum 1968.3–2010.3 J J J N N N V V V F F F

Table 4.1: Commodities Futures out of the SP-GSCI and their Rolling Scheme

group are closely related to some index commodities.

4.1 Preliminary Evidence of Price Impact

Given the massive size of investment tied to the SP-GSCI, when it rolls futures forward, the

large shorting demand of the maturing contract (being rolled from) could potentially push

its price down, while the large longing demand of the deferred contract (being rolled into)

could push its price up4. Together, the resulting price impact would cause the roll yield to

drop in the rolling period. In the following analysis, I will provide some preliminary and

4Some market participants state that they tend to avoid trading in the SP-GSCI rolling periods if they

want to do similar trading as the SP-GSCI does.
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visual evidence based on this intuition to show the existence of the price impact.

First, a 15-business-day window is constructed to examine the change of roll yields,

with the last five days being the rolling dates of the SP-GSCI. This window is labeled

”rolling window”. Days after SP-GSCI’s rolling period are not included here, because for

energy commodities, after the SP-GSCI unwinds the maturing contracts, these contracts

typically have less than a week before the last trading days. Previous empirical studies

usually exclude such contracts with just a few days to expire, because these contracts have

great liquidity concerns. The full sample is divided into two sub-samples: 1980-1999 and

2000-2010. 4.1 shows the average roll yields (in percentage) of four representative index

commodities (crude oil WTI, heating oil, gasoline RBOB and live cattle) over the rolling

window in the two periods.

The plots in 4.1 reveal some interesting facts. First, before 2000, the average roll yields

were positive on every day for all 4 commodities. It is consistent with the findings of

Litzenberger and Rabinowitz (1995) and Casassus and Collin-Dufresne (2005) that these

commodities were often in backwardation. In the period 2000-2010, the average roll yields

dropped, especially in the SP-GSCI’s rolling period. Second and more interestingly, before

2000, the roll yields showed no clear trend in the window, and the average roll yields in

the SP-GSCI’s rolling period were not significantly lower than the average roll yields in the

first 5 days of the window. The roll yields were also very smooth across the days. However,

in the period 2000-2010, we can observe very clear drops of roll yields when entering SP-

GSCI’s rolling period, especially for 3 energy commodities. There are decreasing trends for

all commodities, and the average roll yields in the SP-GSCI’s rolling period are much lower

than the average roll yields in the first 5 days, with statistical significance at the 1% level

for three energy commodities and at the 5% level for live cattle.

There are also some drops of roll yields from day 6 to day 10, which could be due to the

price impact of some other commodity indices that roll futures forward a little earlier than

the SP-GSCI. For example, the Reuters/Jefferies-CRB Index (CRB) rolls futures forward

between the 1st and 4th business days of the rolling month (day 7 to day 10), and the

Deutsche Bank Liquid Commodity Index (DBLCI) has a rolling period which is between

the 2nd and 6th business day (day 8 to day 11).
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Figure 4.1: Average Roll Yields of Index Commodities over the 15-day Rolling Window
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Second, I examine an alternative 15-business-day window, with the last day being one

day earlier than the first day of the rolling window, so the two windows are consecutive. As

shown in 4.2, there were no clear trends over the window and drops on any particular day

for all commodities in both time periods. The average roll yields in the last 5 days of the

window were not significantly lower than the average roll yields in the first 5 days. In the

case of gasoline and heating oil, the average roll yields in the two periods were very close

to each on each day.
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Figure 4.2: Average Roll Yield of Index Commodities over an Alternative 15-day Window

Finally, to further confirm that the unique pattern is caused by the price impact of the

Goldman roll, I pick four representative out-of-index commodities from the control group

and examine the change of roll yields in the rolling window. These four commodities are

soybean meal, pork belly, propane and copper, one from each sector. As shown in 4.3,
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the results form clear contrasts to the results of index commodities in the rolling window,

but are very similar to the results of index commodities in the alternative window. For

all 4 commodities in both periods, there were no clear trends and no significant differences

between the average roll yields in the first and last 5 days. Also there were no clear drops

of roll yields when entering the rolling period for all 4 commodities in the period 2000-2010.
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Figure 4.3: Average Roll Yield of Out-of-Index Commodities over the Rolling Window

In sum, the time-series and cross-sectional evidence above is very supportive of the

existence of the price impact due to the Goldman roll. To provide further and more rigorous

evidence, I will design two simple trading strategies to capture the price impact in the next

section and show how both statistically and economically significant the price impact was.
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4.2 Front-Running the Goldman Roll

The idea is that since the Goldman roll would cause the maturing contracts to be tem-

porarily underpriced and the deferred contracts to be overpriced, we can create long-short

positions to capture this price impact. One can either front-run by creating the positions

before the Goldman roll or back-run by creating positions at the same time as the Goldman

roll. Because there is liquidity concern of maturing contracts after the Goldman roll and

the front-running offers more flexibility, I will only focus on front-running strategies.

Assuming that the price of the maturing contract (being rolled from) is Ft,T1 , and the

deferred contract (being rolled into) has price Ft,T2 , then the spread

SP T1,T2
t = Ft,T1 − Ft,T2 (5)

is the amount of gain (or loss) per unit of the commodity when rolling futures forward. It is

also the value of a calendar spread position which shorts one unit of the maturing contract,

and longs one unit of the deferred contract. This long-short spread position is not subject to

the change in absolute price level, and is ideal to capture the full impact of price pressures

exerted by the Goldman roll in both directions.

Without price impact, the spread SP T1,T2
t should be roughly the same over a short time

window. With price impact, the spread should decrease in the rolling period because the

maturing contract’s price Ft,T1 would be pushed down and the deferred contract’s price

Ft,T2 would be pushed up. The front-running strategy is designed to capture this drop of

spread by shorting the maturing contracts and longing the deferred contracts before the

SP-GSCI’s rolling period. The spread positions are then unwound and exactly offset the

SP-GSCI’s positions when it roll futures forward5.

I focus on the rolling window analyzed in the last section6. The 15-day window is

equally divided into three groups. The formal trading strategies are designed as follows.

5One can also create a butterfly spread position to reduce some exposure to the slope of the futures

curve. The butterfly spread position will capture the change in the convexity of the curve, and consists of

long positions in the deferred contracts and short positions in the maturing contracts and contracts with

maturities later than that of the deferred contracts.

6From 4.2, we can see that moving further ahead of the rolling window would not help the performance

a lot.



CHAPTER 4. EMPIRICAL ANALYSIS 24

With Strategy 1in each month, I first identify the commodities that the SP-GSCI will

roll forward. For such commodities, calendar spread positions are created on each day in

the first group, which runs from 10 to 6 business days before the SP-GSCI’s first rolling

date. The calendar spread position involves shorting the maturing contracts that the SP-

GSCI is currently holding and longing the deferred contracts that it will roll into. In this

way, I create the same spread positions as the Goldman roll, except I do it 10 days earlier.

The calendar spread positions will be unwound in the SP-GSCI’s rolling period. Like the

SP-GSCI, I create 20% of the total spread positions each day and also unwind 20% each

day.

Strategy 2 follows the same methodology except front-running the Goldman roll by

just 5 days. The spread positions are created in the second group of days, which runs

from 5 to 1 business day before the first rolling date of the SP-GSCI. Basically, Strategy

1 captures the spread change in 10 days and Strategy 2 captures the spread change in 5

days. Since both strategies are implemented in very short periods, if they earn very high

abnormal excess returns, it is very unlikely to be caused by factors other than the price

impact of the Goldman roll. There are multiple ways to improve the simple strategies, but

the idea here is to show how the most simple and straightforward strategy would perform.

For commodity i, the excess return of Strategy j (j = 1, 2), from day tj when the spread

position is created to day t
′

when the position is unwound, is defined as follows

ri,jt =
SP i,T1,T2

tj
− SP i,T1,T2

t′

(F itj ,T1
+ F itj ,T2

)/2
=

(F itj ,T1
− F itj ,T2

)− (F i
t′ ,T1
− F i

t′ ,T2
)

(F itj ,T1
+ F itj ,T2

)/2
. (6)

This return is an excess return because the collateral earns the interest of risk-free rates. I

also assume that both strategies invest the capital in the risk-free asset when they are not

front-running the Goldman roll, so if the SP-GSCI rolls commodity i forward in the month,

the monthly excess return of investing in commodity i with Strategy j is just the 5-day

average of ri,jt , otherwise the monthly excess return is zero.

The 19 commodities are grouped by sector to form equally weighted portfolios (agri-

culture, energy, livestock and metals), and a total portfolio using all commodities. In each

month, the portfolio’s return is the average return of the commodities that the SP-GSCI

rolls forward in this portfolio during the month. Equation (6) indicates that the calendar
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spread position is fully collateralized, so the excess return ri,jt involves no leverage. In prac-

tice, the margin requirement is about 10-15% of the nominal value for creating an outright

futures position, and only 2-4% for initiating a calendar spread position, so both strategies

can be easily implemented using very high leverage in the real world.

4.2.1 Performance of the Strategies

Similar to the previous analysis, I divided the full sample period into two sub-periods:

1980-1999 and 2000-2010. 4.2 reports the summary statistics of the five portfolios’ monthly

excess returns (in percentage). The difference of performances in the two periods is striking.

Let us first discuss Strategy 1.

First, the mean excess returns of all 5 portfolios were very significantly positive in

the period 2000-2010, and much larger than the mean excess returns before 2000. In the

period 1980-1999, besides the metals portfolio, the mean excess returns ranged from -0.006%

(energy) to 0.13% (agriculture) monthly, while in the period 2000-2010, the mean excess

returns increased to a range of 0.31% (total) to 0.42% (livestock) monthly. The mean excess

return was relatively small in magnitude for the metals portfolio, but still it increased from

-0.028% before 2000 to 0.033% since 2000 (monthly).

Second, the monthly Sharpe ratios surged to very high levels in the period 2000-2010,

ranging from 0.32 (agriculture) to 0.79 (total). In the period 1980-1999, besides the agri-

culture portfolio, the monthly Sharpe ratios of the other 4 portfolios were typically not high

or even negative, ranging from -0.14 (metals) to 0.15 (total). The jumps in monthly Sharpe

ratios were especially striking for three portfolios: energy portfolio (from -0.007 to 0.64),

metals portfolio (from -0.14 to 0.55) and total portfolio (from 0.15 to 0.79).

Third, except for the agriculture portfolio, 4 portfolios’ excess returns were positively

skewed in the period 2000-2010, with skewness ranging from 0.13 (total) to 2.23 (metals).

This makes it more difficult to explain the high Sharpe ratios with risk based theories. In

contrast, in the period 1980-1999, the skewness was slightly positive 0.19 for the livestock

portfolio, and negative for the other 3 portfolios, ranging from -3.12 (metals) to -0.17 (total).
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Agriculture Energy Livestock Metals Total

1980-1999 2000-2010 1980-1999 2000-2010 1980-1999 2000-2010 1980-1999 2000-2010 1980-1999 2000-2010

Strategy 1

Mean 0.13 0.23 -0.006 0.37 0.12 0.42 -0.03 0.033 0.06 0.31

T-stat 3.29 3.50 -0.11 7.05 1.96 5.34 -2.17 6.14 2.36 8.81

Std 0.61 0.73 0.81 0.58 0.93 0.86 0.20 0.06 0.41 0.39

Skewness 1.78 -2.61 -0.71 0.88 0.19 0.74 -3.12 2.23 -0.17 0.13

Kurtosis 9.93 35.1 6.69 4.45 3.83 5.55 24.6 12.8 3.32 5.75

Min -1.84 -5.39 -3.82 -0.88 -2.93 -1.72 -1.66 -0.087 -1.19 -1.22

Max 2.73 3.73 2.66 2.38 3.22 4.32 0.69 0.39 1.06 1.70

Sharpe Ratio 0.21 0.32 -0.007 0.64 0.13 0.48 -0.14 0.55 0.15 0.79

Max Drawdown 2.09 5.39 22.40 0.94 8.73 7.53 7.40 0.09 5.25 1.44

# of obs 240 123 240 123 240 123 240 123 240 123

Strategy 2

Mean 0.05 0.07 0.027 0.21 0.01 0.13 -0.013 0.019 0.02 0.13

T-stat 2.13 1.47 0.66 4.81 0.25 2.33 -1.65 5.71 0.97 4.53

Std 0.38 0.51 0.64 0.50 0.62 0.61 0.12 0.04 0.31 0.31

Skewness -1.15 -1.40 0.09 2.45 -0.07 0.12 -3.34 0.76 -0.16 -0.61

Kurtosis 12.9 33.4 7.13 15.8 4.38 3.97 21.2 5.40 4.34 11.0

Min -1.91 -3.63 -2.44 -0.81 -2.14 -1.69 -0.85 -0.08 -0.94 -1.53

Max 1.54 3.06 2.85 3.37 2.07 2.25 0.3 0.15 1.27 1.35

Sharpe Ratio 0.17 0.16 0.04 0.43 0.02 0.21 -0.12 0.62 0.06 0.41

Max Drawdown 2.87 3.63 15.09 2.61 17.26 5.19 3.40 0.08 9.34 2.05

# of obs 240 123 240 123 240 123 240 123 240 123

Table 4.2: Summary Statistics of Monthly Excess Returns with Two Trading Strategies
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Finally, in the period 2000-2010, 4 portfolios experienced big drops in the maximum

drawdown. The most dramatic ones are energy and metals portfolio, whose maximum

drawdowns dropped from 22.4% before 2000 to only 0.94% and from 7.4% to 0.09% respec-

tively.

The results for Strategy 2 are similar, and even stronger in some cases. Besides the

agriculture portfolio, the mean excess returns of the other 4 portfolios were not significantly

different from zero before 2000, ranging from -0.013% (metals) to 0.027% (energy), but they

became very positive and highly significant in the period 2000-2010, ranging from 0.019%

(metals) to 0.22% (energy). The monthly Sharpe ratios of these 4 portfolios ranged from

-0.11 (metals) to 0.06 (total) before 2000, and increased to the range of 0.21 (livestock) to

0.52 (metals) since 2000. The skewness of excess return also increased a lot for the energy,

livestock and metals portfolios, among which the energy portfolio experienced a jump from

0.09 before 2000 to 2.45 since 2000 in skewness.

Panel A of 4.3 reports the summary statistics of the portfolios’ annualized excess returns

in the period 2000-2010. The annual Sharpe ratios ranged from 1.09 (agriculture) to 2.75

(total) with Strategy 1, and from 0.46 (agriculture) to 1.78 (metals) with Strategy 2. So

far the capital is assumed to be invested in the risk-free assets when not utilized for front-

running. However, a large hedge fund could use the capital to invest in other assets and

trading strategies, so the fund manager may only care about the performance in the period

when the capital is actually used. The excess returns with Strategy 1 were actually 10-day

returns and should be annualized by multiplying by a factor of 252/10. Similarly, the excess

returns with Strategy 2 were 5-day returns and should be annualized by a factor of 252/5. As

reported in Panel B of 4.3, the annualized Sharpe ratios now are much higher, ranging from

2.0 (agriculture) to 3.99 (total) with Strategy 1 and from 1.16 (agriculture) to 4.39 (metals)

with Strategy 2. Besides the metals portfolio, the means of unlevered annual excess returns

ranged from 7.8% (total) to 10.47% (livestock) with Strategy 1, and ranged from 5.16%

(agriculture) to 10.8% (energy) with Strategy 2. Therefore, the strategies’ performance is

much better from the perspective of a money manager with multiple investing opportunities.

The CRB data set does not have data on the bid-ask-spreads, so I can not incorporate

transaction costs into the evaluation of the strategies. However, since the index commodities
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Panel A: Annualized by Month

Agriculture Energy Livestock Metals Total

Strategy 1

Mean 2.74% 4.43% 4.99% 0.40% 3.71%

Std 2.51% 2.01% 2.99% 0.21% 1.35%

Skewness −2.61 0.88 0.74 2.23 0.13

Sharpe Ratio 1.09 2.20 1.67 1.92 2.75

Strategy 2

Mean 0.81% 2.58% 1.53% 0.23% 1.52%

Std 1.76% 1.72% 2.11% 0.13% 1.08%

Skewness −1.40 2.45 0.12 0.76 −0.61

Sharpe Ratio 0.46 1.50 0.73 1.78 1.41

Panel B: Annualized by Trading Days

Agriculture Energy Livestock Metals Total

Strategy 1

Mean 8.74% 9.30% 10.47% 1.12% 7.80%

Std 4.38% 2.92% 4.34% 0.33% 1.95%

Skewness −2.69 0.88 0.74 1.82 0.13

Sharpe Ratio 2.00 3.19 2.41 3.36 3.99

Strategy 2

Mean 5.16% 10.82% 6.43% 1.29% 6.40%

Std 4.44% 3.52% 4.32% 0.29% 2.21%

Skewness −1.32 2.45 0.12 0.34 −0.61

Sharpe Ratio 1.16 3.08 1.49 4.39 2.90

Table 4.3: Summary Statistics of Annualized Excess Returns in 2000-2010
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have the most liquid markets among all commodities, and the contracts involved in the

Goldman roll are also the most liquid contracts in each market, the transaction costs are

quite low. The typical bid-ask-spread is only a few bps (basis points) of the futures price.

For crude oil (WTI), the bid-ask-spread is often just 1 bp. In addition, since the trading

volumes tend to increase a lot in the SP-GSCI’s rolling period, the bid-ask-spread can be

even lower when the strategies unwind the spread positions. Therefore, the strategies should

still be very profitable even after taking into account the transaction costs, especially in the

most liquid energy sector.
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Figure 4.4: Average Monthly Excess Returns of the Four Sector Portfolios with Strategy 1

Now let us focus on Strategy 1 and take a closer look at the excess returns year by

year. 4.4 shows each year the average monthly excess returns (in percentage) of the 4
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sector portfolios. The energy and livestock portfolios actually had mostly positive excess

returns as early as 1992, right after the launch of the SP-GSCI. For the metals portfolio,

the average excess returns were mostly negative before 2000, and then stayed positive every

year from 2000. The agriculture portfolio is quite different from the other 3 portfolios. The

average excess returns have been mostly positive in the whole sample period, and there

was a cyclical pattern before 2003. However, since 2003, the cyclical pattern disappeared

and the average excess returns have stayed positive every year. The plots indicate that the

exact choice of the cutoff year is not very important, and the results could be even better

if the cutoff year is moved a few years earlier.

As a comparison, the same trading strategies are applied to the control group with the

18 out-of-index commodities. Similarly, four equally weighted sector portfolios and one

total portfolio are formed. 4.4 reports the summary statistics of these 5 portfolios’ monthly

excess returns in the same two periods: 1980-1999 and 2000-2010. The results form a very

clear contrast to the results in Table 3. With both strategies in both periods, most of the 5

portfolios’ mean excess returns were not significantly different from 0, or even significantly

negative in some cases. The monthly Sharpe ratios were all either negative or close to zero,

with a maximum of 0.09 obtained by the energy portfolio with Strategy 1 before 2000.

What is more, with Strategy 1, except for the livestock portfolio, the mean excess returns

and Sharpe ratios actually dropped in the period 2000-2010 for 4 portfolios. With Strategy

2, there were also 4 portfolios whose mean excess returns and Sharpe ratios decreased in

the period 2000-2010.
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Agriculture Energy Livestock Metals Total

1980-1999 2000-2010 1980-1999 2000-2010 1980-1999 2000-2010 1980-1999 2000-2010 1980-1999 2000-2010

Strategy 1

Mean 0.02 -0.04 0.12 -0.31 -0.06 0.05 -0.06 -0.10 -0.013 -0.13

T-stat 0.64 -0.97 1.07 -1.81 -0.49 0.25 -1.55 -3.10 -0.25 -1.57

Std 0.51 0.47 1.34 1.93 1.87 2.07 0.59 0.35 0.83 0.90

Skewness -0.73 -0.64 0.76 -0.42 1.50 -2.69 -0.84 0.06 1.27 -0.90

Kurtosis 8.17 6.16 11.0 4.42 19.8 16.7 10.9 11.2 13.3 5.63

Min -2.48 -2.09 -5.46 -7.91 -7.50 -12.8 -2.70 -1.40 -3.57 -4.18

Max 1.70 1.15 6.39 4.66 12.1 4.17 3.34 1.73 5.13 1.80

Sharpe Ratio 0.04 -0.09 0.09 -0.16 -0.03 0.02 -0.10 -0.28 -0.02 -0.14

# of obs 240 123 145 123 240 123 240 123 240 123

Strategy 2

Mean 0.003 -0.07 0.032 -0.10 -0.004 0.03 -0.035 -0.04 0.006 -0.06

T-stat 0.11 -2.26 0.37 -0.76 -0.05 0.25 -1.32 -2.15 0.15 -0.91

Std 0.39 0.35 1.04 1.52 1.36 1.54 0.41 0.20 0.62 0.71

Skewness -1.24 -1.04 0.36 -0.26 2.38 -2.14 1.24 2.03 1.94 -0.83

Kurtosis 12.4 9.34 12.2 5.21 24.0 16.1 14.6 19.0 16.6 6.47

Min -2.54 -1.85 -2.44 -5.97 -5.74 -8.64 -1.94 -0.74 -2.57 -3.10

Max 1.44 1.29 5.32 5.14 9.04 5.77 2.69 1.28 4.32 2.17

Sharpe Ratio 0.01 -0.20 0.03 -0.07 -0.003 0.02 -0.09 -0.19 0.01 -0.08

# of obs 240 123 145 123 240 123 240 123 240 123

Table 4.4: Summary Statistics of Monthly Excess Returns with Two Strategies using Out-of-Index Commodities
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To further confirm the results, I perform a panel regression which is specified as follows

Reti,t = α+ β1I
i
IndexCom + β2I

i,t
inIndex + Controls+ ui,t. (7)

where the dependent variable Reti,t is Strategy’s average excess return in the trading period

of commodity i in year t and ui,t is the random error. IiIndexCom is an indicator variable,

which is equal to 1 if commodity i is an index commodity and 0 if it is an out-of-index

commodity. Ii,tinIndex is also an indicate variable, which is equal to 1 if commodity i is

actually included in the SP-GSCI in year t and 0 if otherwise. Since the SP-GSCI was

launched at the end of 1991, Ii,tinIndex = 0 for all index commodities before 1992. Among the

19 index commodities, natural gas was added to the SP-GSCI in 1994. Crude oil (Brent),

gasoil and Kansas wheat were included into the SP-GSCI in 1999, and feeder cattle was

included in 2002. All other 14 commodities were added before 1992.

To control for the macroeconomic demand-and-supply conditions and business cycle,

the contemporaneous GDP growth and inflation in year t are included in the regressions.

I also include a control variable that is specific to each commodity in each year. This

variable is the average roll yield of commodity i in year t. This control variable summarizes

the commodity-specific demand-and-supply condition and the term structure feature. All

control variables are demeaned.

The coefficients of interests are α, β1 and β2. α is the average of Reti,t for out-of-index

commodities. For index commodities, α + β1 is the average of Reti,t before they were

included in the SP-GSCI (or the launch of the SP-GSCI), while α+ β1 + β2 is the average

of Reti,t after the inclusions. The expected values of α and β1 are: α = 0 and β1 = 0, which

means that without index investment, the strategy’s excess return is 0. If the Goldman roll

had price impact, we should expect β2 > 0. As reported in Column 1 and 3 of 4.5, the

coefficients α and β1 are not statistically different from 0 for both strategies. After inclusion

in the SP-GSCI, Strategy 1 yielded an average excess return of 0.35% in the trading period

of 10 days, while Strategy 2 has an average excess return of 0.24% in the 5-day trading

period. Both are statistically significant at the 1% level. Column 2 and 4 of 4.5 indicates

that the results are robust if we only consider index commodities (IiIndexCom = 1).

For the control variables, GDP growth and inflation were both positively correlated
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Dependent variable: Reti,t

Strategy 1 Strategy 2

All IiIndexCom = 1 All IiIndexCom = 1

1 2 3 4

Constant −0.028 0.011 −0.026 −0.030

(0.040) (0.022) (0.024) (0.022)

IiIndexCom 0.029 −0.016

(0.044) (0.034)

Ii,tinIndex 0.35∗∗∗ 0.33∗∗∗ 0.24∗∗∗ 0.22∗∗∗

(0.057) (0.060) (0.036) (0.034)

Controls

RY i,t −0.031 −0.022 −0.008 0.002

(0.019) (0.016) (0.011) (0.012)

growthtGDP 0.034∗∗∗ 0.033∗∗ 0.030∗∗∗ 0.035∗∗∗

(0.011) (0.013) (0.007) (0.009)

Inflationt 0.032∗∗∗ 0.021∗∗ 0.019∗∗∗ 0.005

(0.008) (0.009) (0.006) (0.010)

R2
adj 8.89% 10.25% 7.82% 10.72%

obs 956 537 956 537

Table 4.5: Regressions on the Trading Strategies’ Excess Returns 1
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with the dependent variable and statistically significant. The commodity-specific control

variable–average roll yield of commodity i in year t–is insignificant, which means that the

strategies’ excess returns are not related the slope of the terms structure.

In sum, the results above indicate that the price impact of the Goldman roll is both

statistically and economically significant. The Goldman roll effectively created a large

market anomaly and a great trading opportunity for arbitragers.

4.3 Limits to Arbitrage

All information about the Goldman roll is publicly available. Compared to equity and

bond markets, futures markets have much fewer barriers for arbitrage. There is no short-

sell constraints, and high leverage can be easily obtained through low margin requirement.

The transaction cost is also very low, and the trading strategies are very easy to imple-

ment. Therefore, if the market is well arbitraged, we should not expect to see such great

performance of front-running the Goldman roll as any market anomaly would be quickly

arbitraged away. The fact that the strategies worked so well in the last decade suggests that

there are some limits to arbitrage. The performance of front-running is largely determined

by two opposite forces. The positive one is the size of index investment, while the negative

one is the size of arbitrage capital utilized to take advantage of the price impact.

From 1986, the CFTC started to publish weekly Commitment of Traders (COT) reports,

which includes the aggregate number of spread positions taken by ”Noncommercial” traders.

These traders are mainly money managers and labeled speculators in the literature. Since

to capture the price impact, the arbitrageurs have to create spread positions, the number of

spread positions held by speculators serves as a good approximation, although the nature

of these spread positions can not be identified.

4.5 shows each year the average spread positions taken by speculators and also their

ratios relative to total open interests in the markets of 9 index commodities7. For most

commodities, there was very few spread positions and also little growth until 2003, espe-

7Due to limit of space and the large number of commodities, I only report these 9 commodities. The

plots for other 8 commodities have similar pattern, and are available upon request.
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Figure 4.5: Average Number of Spread Position Taken by Speculators
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cially in energy and livestock sectors, which front-running strategies yielded the best per-

formances. However, the positions started to growth dramatically from 2003 and reached

peaks in 2008 for many commodities. The growth was typically more than 5-fold. The plots

suggest that very few arbitrage capital was used to exploit the price impact before 2003,

and then as the arbitrageurs became more aware of this trading opportunity, more capital is

utilized to exploit this market anomaly. This is consistent with the theory of Duffie (2010)

that arbitrage capital can be slow-moving due to arbitrageurs’ inattention to a particular

market and particular strategy. Before 2003, commodity was not a popular asset class and

commodity index investment was rarely known among the investment communities.

As shown in 4.4, the 4 sector portfolios enjoyed the best gains in the period 2003-2005,

when commodity index investment started the most dramatic growth and there were not

many arbitrageurs. During three years, the average of unlevered annual excess return was

8.09% for the energy portfolio, 7.18% for the livestock portfolio, 5.62% for the agriculture

portfolio and 0.28% for the metals portfolio. However, the performance of the 4 portfolios

has been declining since 2006, and the average excess returns dropped to levels close to 0.

The livestock portfolio even experienced negative average excess returns since 2008.

Part of the reason is the increasing arbitrage capital, but another cause is that many

investors might have moved their assets away from these commodity index investments.

When the commodity prices collapsed in the middle of 2008, commodity index investment

reduced a lot. The data from CFTC’s supplement reports shows that the total long posi-

tions held by index investors dropped 30-50% from their peaks for many agriculture and

livestock commodities in 2008. During this period, many portfolios also experienced their

maximum drawdowns. Also, a new generation of commodity indices emerged since 2006

with more intelligent rolling methodologies. Many investments moved from the old gen-

eration of indices to the new generation. Instead of just focusing on contracts with short

maturities, new commodity indices search the full term structure, and choose maturities as

far as one year ahead. The exact maturity choice usually depends on the term structure of

the current market. If the term structure is in contango, they roll into contracts with long

maturities to reduce the frequency of rolling and thus the roll cost. If the term structure

is in backwardation, they roll into the contracts with close maturities to take advantage of
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the positive roll yields.

This is consistent with the classic limits to arbitrage theory by Shleifer and Vishny

(1997). The arbitrage profit is lower when there is a reduction in size of index investment

and an increase in the amount of arbitrage capital in the futures markets. The performance

of front-running the Goldman roll is determined by the net result of two opposite forces.

To confirm this correlation, I run the following panel regressions for index commodities:

Reti,t = α+ β2I
i,t
inIndex + β3I

i,t
inIndex ×NetRatio

i,t + Controls+ ui,t. (8)

where the dependent variable Reti,t is Strategy’s average excess return in the trading period

of commodity i in year t and Ii,tinIndex is the indicator variable specified in the last section,

which is equal to 1 if commodity i is actually included in the SP-GSCI in year t and 0 if

otherwise. NetRatioi,t = IndexRatioi,t − SpreadRatioi,t measures net result of the two

forces, where IndexRatioi,t is the average ratio of index investment in commodity i relative

to the value of its total open interest and SpreadRatioi,t is the average ratio of spread

position held by speculators relative to total open interest.

The data on investment tied to the SP-GSCI and DJ-UBSCI are not publicly available.

Master and White (2008) use sources of Bloomberg, Goldman Sachs and CFTC reports

to construct an annual series of estimated investment tied to the two indices from 1991 to

2008 (first half year). In addition, they estimate that the SP-GSCI had about 63% market

share and the DJ-UBSCI had about 32% market share in 2008. Another important data

source is the quarterly CFTC reports of index investments starting from the fourth quarter

of 2007, which have data on the values of total index investment. I only consider the value

of long positions in the CFTC’s reports, and the quarterly data is converted into annual

data by using the average of four quarters in one calendar year. Using the estimated market

shares, I construct the values of investment tied to the SP-GSCI and DJ-UBSCI in 2008

and 2009. For each index, total value of investment tied to it is then allocated to individual

commodity according to its weighting scheme each year, and for individual commodity, the

total value of index investment is equal to sum of investment from the two indices. The

variable IndexRatioi,t is equal to the value of index investment in commodity i in year t

divided by the commodity’s total market value in year t, which is average value of total
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open interests in year t. The data on total open interests and spread positions held by

noncommercial traders can be obtained from the CFTC’s COT reports.

As reported in Column 1 and 3 of 4.6, the coefficient β3 is statistically positive for both

strategies, especially for Strategy 1, whose average excess return increases by 0.96 bps with

1% increase in the net ratio. Column 2 and 4 of 4.6 shows that the results are robust if we

only consider index commodities after they were included in the SP-GSCI.

To conclude, the exercise provides empirical evidence that a market anomaly can exist

and persist due to slow-moving arbitrage capital and the resulting delayed arbitrage. As

more people become aware of the price impact, more arbitragers will exploit it and index

investors will also move their investments into better designed commodity indices.

4.4 Cost of the Price Impact

It has been very profitable to exploit the price impact of the Goldman roll, but from the

perspective of index investors, how costly was the price impact? In this section, I will

estimate the cost of the price impact by comparing two excess return indices. Since the

SP-GSCI was launched at the end of 1991, I consider the period starting from 1992 for the

estimation.

On January 2 1992, $100 dollars were assumed to be invested in futures contracts of

the 19 index commodities. The investment that each commodity receives from the $100

is proportional to its SP-GSCI weight in 2010. To focus on the cost of the price impact,

there is no re-balancing and the choice of futures contracts to hold is exactly the same as

the SP-GSCI. I construct two indices with different rolling periods. One index rolls the

futures forward in the SP-GSCI’s rolling period, and is labeled ”SP-GSCI Roll” index, so

this index rolls exactly the same as the Goldman roll. The other index rolls just 10 business

days earlier, in the first 5 days of the 15-day rolling window we discussed previously, and

is labeled ”Earlier Roll” index. The interest earned on collateral is not considered, so the

indices are excess return indices.

As shown in Panel A of 4.6, the values of the two indices closely tracked each other before

2000, and then started to deviate far away. Although the two indices still shared the same
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Dependent variable: Reti,t

Strategy 1 Strategy 2

IiIndexCom = 1 Ii,tinIndex = 1 IiIndexCom = 1 Ii,tinIndex = 1

1 2 3 4

Constant 0.062∗∗ 0.24∗∗∗ −0.013 0.15∗∗∗

(0.029) (0.05) (0.026) (0.039)

Ii,tinIndex 0.20∗∗∗ 0.18∗∗∗

(0.055) (0.037)

NetRatio∗Ii,tinIndex 0.96∗∗∗ 1.04∗∗∗ 0.33∗ 0.39∗∗

(0.25) (0.24) (0.17) (0.17)

Controls

RY i,t 0.002 0.002 0.021 0.027

(0.019) (0.025) (0.013) (0.018)

growthtGDP 0.064∗∗∗ 0.078∗∗ 0.052∗∗∗ 0.061∗∗∗

(0.021) (0.024) (0.010) (0.013)

Inflationt 0.012 −0.009 0.002 −0.007

(0.022) (0.049) (0.019) (0.041)

R2
adj 12.16% 9.26% 11.12% 8.40%

obs 404 287 404 287

Table 4.6: Regressions on the Trading Strategys’ Excess Returns 2
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pattern in the period 2000-2010 due to the same exposure to the spot returns, the ”Earlier

Roll” index outperformed the ”SP-GSCI Roll” index because its roll yields were higher.

When commodity prices reached heights in mid-2008, the ”SP-GSCI Roll” index reached

a peak value $725, while the ”Earlier Roll” index reached $1099, with out-performance of

$374.
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Figure 4.6: Value of Two Indices with Different Rolling Dates

As a comparison, I also picked from the control group 12 out-of-index commodities

that have data back to 1992 and until 2009. Since there are no reference weights, equal

weighting is applied to each commodity. The same two rolling rules are applied to form the

same two indices: ”SP-GSCI Roll” and ”Earlier Roll”. As shown in Panel B of 4.6, there

is no detectable difference between the values of two indices in the whole period 1992-2009.
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The maximum difference between the two indices was only about $6.

4.7 reports the summary statistics of the two indices’ annualized excess returns. The

full period is divided into two sub-periods: 1992-1999 and 2000-20098. For the 19 index

commodities, the excess returns of the two indices had almost the same standard deviations

and skewness in both periods, but the means are quite different. The ”SP-GSCI Roll”

index yielded an annual excess return of 2.31% before 2000 and 7.93% since 2000, while the

”Earlier Roll” index outperformed it annually by 1.66% and 3.59% respectively. Therefore,

the Sharpe ratio of the ”Earlier Roll” index was 82% higher in the period 1992-1999 and 48%

higher in the period 2000-2009. In addition, the difference in excess returns had a positive

skewness 0.43 before 2000, and 0.79 from 2000, which indicates the arbitrage opportunity

induced by the price impact. It is also statistically significant that the mean difference

in excess returns in the period 2000-2009 is larger than the mean difference in the period

1992-1999, which suggests that when index investment grew larger, index investors endured

a higher cost of the price impact.

In a clear contrast, for the 12 out-of-index commodities, all the summary statistics of

the two indices are roughly the same in both periods. Although the ”Earlier Roll” index

was still slightly better, the out-performance was very small, only about 0.25%, and the

difference of excess returns were not always positively skewed.

In order to estimate the cost of the price impact in absolute amount, I collect the data on

total commodity index investment from Masters and White (2008) and the CFTC’s reports

of index investment. All investments are assumed to be tied to the ”SP-GSCI Roll” index.

Each year, the cost due to the price impact is estimated by the size of index investment

multiplied by the average difference of excess returns between the ”SP-GSCI Roll” index

and ”Earlier Roll” index in this year. As shown in 4.7, as the index investment grew, the

cost also grew fast. From 2004, investing in the ”SP-GSCI Roll” index lost over $2 billion

every year to the ”Earlier Roll” index, and in 2009, the loss reached a maximum of $8.4

billion.

8The returns in 2010 are excluded because the propane data ends in Sep 2009 and I want to include one

energy commodity in the group of out-of-index commodities. However, the results are very similar if data

of 2010 is included and propane is excluded.
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1992-1999 2000-2009

SP-GSCI Roll Earlier Roll Diff. SP-GSCI Roll Earlier Roll Diff. DID

19 Index Commodities

Mean 2.31% 3.97% 1.66% 7.93% 11.52% 3.59% 1.93%∗∗

Sd 21.5% 20.3% 2.20% 34.4% 34.1% 2.36%

Skewness 0.02 0.05 0.43 −0.3 −0.3 0.79

Sharpe Ratio 0.11 0.20 0.23 0.34

12 Out-of-Index Commodities

Mean 4.67% 4.90% 0.23% 5.61% 5.87% 0.26% 0.03%

Sd 11.4% 11.4% 1.14% 20.1% 20.2% 1.02%

Skewness 0.008 −0.001 2.19 −0.2 −0.2 −0.31

Sharpe Ratio 0.41 0.43 0.28 0.29

Table 4.7: Summary Statistics of Two Indices with Different Rolling Periods
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Figure 4.7: Estimated Size of Index Investment and Loss due to Price Impact
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In sum, because the massive shorting and longing of futures contracts exerts very high

price pressure in the rolling period, the resulting price impact has been very costly to index

investors in terms of both forgone excess return and absolute amount of loss.
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Chapter 5

Conclusions

Since index funds have very low management fees, investors usually perceive index invest-

ment as an inexpensive way to gain broad market exposure. While it seems to be true for

the equity index funds, this paper shows that index investment can be very expensive in

the commodity markets due to the large price impact of index investors’ mechanical rolling

forward of futures contracts. Equity index funds invest directly in the underlying assets, so

the fund managers rarely need to change positions besides the inflow and outflow of new

funds. While there are some documented inefficiencies in equity investment, like the inclu-

sion effect, the resulted costs are quite small, because the inefficiencies only happen at very

low frequency and arbitrageurs in the equity markets are very competitive. Commodity in-

dex investment is very different, because investors take long positions in commodity futures

contracts. Since futures contracts have expiration dates, commodity index investors have to

roll their entire positions forward at monthly frequency, which resulted a very high cost due

to the large price impact of this rolling activity. Commodity index investors lost on average

3.6% annual excess returns due to the price impact. In absolute terms, the estimated loss

amounted to a total of $26 billion over the period 2000 to 2009, while the estimated total

management fee was only about $5 billion. This magnitude of economic loss dwarfs the

cost of price impact in the S&P 500 equity index due to the inclusion and exclusion effect,

which was about 0.21-0.28% each year on average from 1990 to 2005 estimated by Petajisto

(2010). In absolute terms, Petajisto assumed total assets of $1.2 trillion tied to the S&P

500, and the estimated annual average costs were $2.5-3.4 billion.
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Concern about price impact motivated some second-generation commodity indices to

have longer rolling periods so that the price pressure on each rolling date is very small.

One example is the UBS Constant Maturity Commodity Index (CMCI), which roll futures

forward at daily frequency. However, it seems that many other new indices still did not

recognize the possible price impact, because they still have very short rolling periods, and the

new rolling methodologies are mainly designed to reduce the roll cost in the current contango

markets. As discussed, these indices tend to roll into contracts with long maturities, but

these contracts are not as liquid as the contracts with short maturities, so the price impact

of the rolling activity could be quite large even though the investment tied to these indices

is not very large. As these indices get more popular, the price impact and the resulted cost

can be even larger.

This extends to a more general question of security design. Commodity indices are

very different from the traditional securities, because investing in them requires continuous

management due to the special rolling requirement. Therefore, the designer has to think

about the possible negative effects of fixed management actions when the assets under

management grow larger, and whether the designed index will be immune to these effects.

Another problem is that as the designer tries to minimize the potential negative effects,

the management rules could become very complicated. Since the complexity of the index

increases, the cost of replicating it and thus the management fee increases, and investors

may feel that it is more difficult to understand and analyze the index. There is a balance

between the potential benefits and costs associated with the complexity of securities. These

problems also apply to the design of exchange-traded funds (ETFs), which are becoming

more and more popular among investors.

Although the market anomaly created by the Goldman roll can be arbitraged away by

enough arbitrageurs, the impact of index investment will not disappear. As more and more

arbitrageurs try to front-run the Goldman roll and also each other, they can spread the price

impact out to other dates and also other maturities. This can have a profound effect on the

term structure of commodity futures markets, and may potentially be one of the reasons why

the term structures of many index commodities have moved from backwardation towards

contango in recent years. Further research can investigate this hypothesis and look at the
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impact of index investment on commodity term structure.
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Chapter 6

Abstract

This paper studies the asset pricing implications of Bayesian learning about the parame-

ters, states, and models determining aggregate consumption dynamics. Our approach is

empirical and focuses on the quantitative implications of learning in real-time using post

World War II consumption data. We characterize this learning process and find that re-

visions in beliefs stemming from parameter and model uncertainty are significantly related

to realized aggregate equity returns. This evidence is novel, providing strong support for a

learning-based story. Further, we show that beliefs regarding the conditional moments of

consumption growth are strongly time-varying and exhibit business cycle and/or long-run

fluctuations. Much of the long-run behavior is unanticipated ex ante. We embed these

subjective beliefs in a general equilibrium model to investigate further asset pricing impli-

cations. We find that learning significantly improves the model’s ability to fit standard

asset pricing moments, relative to benchmark model with fixed parameters. This provides

additional evidence supporting the importance of learning.
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Chapter 7

Introduction

This paper studies the asset pricing implications of learning about aggregate consumption

dynamics. We are motivated by practical difficulties generated from the use of complicated

consumption-based asset pricing models with many difficult-to-estimate parameters and

latent states. For example, parameters or states controlling long-run consumption growth

are at once extremely important for asset pricing and particularly difficult to estimate.

Thus, we are interested in studying an economic agent who is burdened with some of the

same econometric problems faced by researchers, a problem suggested by Hansen (2007).1

A large existing literature studies asset pricing implications of statistical learning –

the process of updating beliefs about uncertain parameters, state variables, or even model

specifications. Pastor and Veronesi (2009) provide a recent survey. In theory, learning

can generate a wide range of implications relating to stock valuation, levels and variation

in expected returns and volatility, and time series predictability, with many of the results

focussed on the implications of learning about dividend dynamics.

Our analysis differs from existing work along three key dimensions. First, we focus

1Hansen (2007) states: “In actual decision making, we may be required to learn about moving targets, to

make parametric inferences, to compare model performance, or to gauge the importance of long-run compo-

nents of uncertainty. As the statistical problem that agents confront in our model is made complex, rational

expectations’ presumed confidence in their knowledge of the probability specification becomes more tenuous.

This leads me to ask: (a) how can we burden the investors with some of the specification problems that

challenge the econometrician, and (b) when would doing so have important quantitative implications” (p.2).
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on the empirical implications of simultaneously learning about parameters, state variables,

and even model specifications. Most existing work focuses on learning a single parameter or

state variable. Learning about multiple unknowns is more difficult as additional unknowns

often confounds inference, slowing the learning process. Second, we focus on the specific

implications of real-time learning about consumption dynamics from macroeconomic data

during the U.S. post World War II experience. Thus, we are not expressly interested in

general asset pricing implications of learning in repeated sampling settings, but rather

the specific implications generated by the historical macroeconomic shocks realized in the

United States over the last 65 years. Third, we use a new and stringent test of learning

that relates updates in investor beliefs to contemporaneous, realized equity returns.

In studying the implications of learning, we focus on the following types of questions.

Could an agent who updates his beliefs rationally detect non-i.i.d. consumption growth

dynamics in real time? How rapidly does the agent learn about parameters and models?

Are the revisions in beliefs about consumption moments correlated with asset returns, as a

learning story would require? Is there evidence that learning effects can help us understand

standard asset pricing puzzles, such as the high equity premium, return volatility, and

degree of return predictability?

One of the key implications of learning is that the agent’s beliefs are nonstationary. For

example, the agent may gradually learn that one model fits the data better than an alter-

native model or that a parameter value is higher or lower than previously thought, both of

which generate nonstationarity in beliefs. The easiest way to see this is to note that the

posterior mean of a parameter, E
[
θ|yt

]
, where yt is data up to time t, is trivially a mar-

tingale. Thus revisions in beliefs represent permanent, nonstationary shocks, that can have

important asset pricing implications. For instance, nonstationary dynamics can generate

a quantitatively important wedge between ex post outcomes and ex ante beliefs, providing

an alternative explanation for standard asset pricing quantities such as the observed equity

premium or excess return predictability.2

We study learning in the context of three standard Markov switching models of con-

sumption growth: unrestricted 2- and 3-state models and a restricted 2-state model that

2See also Cogley and Sargent (2008), Timmermann (1993), and Lewellen and Shanken (2002).
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generates i.i.d. consumption growth. The states capture business cycle fluctuations and can

be labeled as expansion and recession in 2-state models, with an additional ‘disaster’ state

in 3-state models.3 Our key assumption is that the agent views the parameters, states, and

even models as unknowns, using Bayes rule to update beliefs using consumption data, as

well as additional macroeconomic data such as GDP growth in extensions.

To focus on different aspects of learning, we consider three sets of initial parameter

beliefs. The first, the ‘historical prior,’ trains the prior using Shiller’s consumption data

from 1889 until 1946, a common approach to generate ‘objective’ priors.4 The second, the

‘look-ahead prior,’ sets prior parameter means to full-sample maximum likelihood point

estimates using post World War II data. We embed substantial uncertainty around these

estimates to study the effect of parameter uncertainty. This is often called an ‘empirical

Bayes’ approach. The third, the fixed parameter prior, is a rational expectations benchmark

with dogmatic beliefs that are fixed at the end-of-sample parameter estimates. Thus, there

is no parameter uncertainty. There is state uncertainty, however, which allows us to separate

the effects of parameter and state uncertainty.

Our first results characterize the beliefs about parameters, states, models, and future

consumption dynamics (e.g., moments) through the sample. The perceived dynamic behav-

ior of aggregate consumption is at the heart of consumption-based asset pricing as it, jointly

with preferences, determines the dynamic properties of the pricing kernel. In terms of be-

liefs, we compute at each point in time the posterior distribution of parameters, states, and

models. As new data arrives, we update beliefs using Bayes rule. In addition to usual sum-

3Markov switching models for consumption or dividends are a benchmark specification in the literature,

see, e.g., Mehra and Prescott (1985), Rietz (1988), Cecchetti, Lam, and Mark (1990, 1993), Whitelaw

(2000), Cagetti, Hansen, Sargent, and Williams (2002), Barro (2006), Barro and Ursua (2008), Chen (2008),

Bhamra, Kuehn, and Strebulaev (2008), Barro, Nakamura, Steinsson and Ursua (2009), Backus, Chernov,

and Martin (2009), and Gabaix (2009). Rietz (1988) and, more recently, Barro (2006, 2009) argue that

consumption disaster risk can help explain some of the standard macro-finance asset pricing puzzles.

4We do account for measurement error, which likely increased reported macroeconomic volatility during

the pre-war period, as argued in Romer (1989). Malmendier and Nagel (2011) present evidence that the

experience of the Great Depression affected investors’ subsequent beliefs about risk and return, broadly

consistent with the Historical prior calibration approach.
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maries of parameters and states, we also compute model probabilities and perform ‘model

monitoring’ in real time as new data arrives. We find that the posterior probability of the

i.i.d. model falls dramatically over time, provided the prior weight is less than one. Thus our

agent is able to learn in real-time that consumption growth is not i.i.d., but has persistent

components.5 The agent believes that expected consumption growth is low in recessions

and high in expansions, with the opposite pattern for consumption growth volatility. The

2-state model quickly emerges as the most likely, but the 3-state model with a disaster state

has 5 − 10% probability at the end of the sample. At the onset of the financial crisis in

2008, the probability of the disaster model increases.6

There is significant learning about the expansion state parameters, slower learning about

the recession state, and almost no learning about the disaster state, as it is rarely, if ever,

visited. Thus, there is an observed differential in the speed of learning. Standard large

sample theory implies that all parameters converge at the same rate, but the realized con-

vergence rate depends on the actual observed sample path. There is also strong evidence

for nonstationary time-variation in the conditional means and variances of consumption

growth, as well as measures of non-normality such as skewness and kurtosis. For both the

historical and the look-ahead priors, the agent’s perception of the long-run mean (volatil-

ity) of consumption growth generally increases (decreases) over the sample. The perceived

persistence of recessions (expansions) decreases (increases).7 As the agent’s beliefs about

these parameters and moments change, asset prices and risk premia will also change.

The first formal test of the importance of learning regresses contemporaneous excess

stock market returns on revisions in beliefs about expected consumption growth. This

test, which to our knowledge is new to the literature, is a fundamental implication of

any learning-based explanation: for learning to matter, unexpected revisions in beliefs

5This result is robust to persistence induced by time-aggregation of the consumption data (see Working

(1960)).

6The posterior probability of the three-state model would change dramatically, if visited. For example, if

a -3% quarterly consumption growth shock were realized at the end of the sample, the posterior probability

of the three-state model would increase to almost 50%.

7All of the results described in the current and previous paragraphs are robust to learning from additional

GDP growth data.
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about expected consumption growth should be reflected in the unexpected aggregate equity

returns.8. We find strong statistical evidence that this relationship is positive, and the

results are similar for both the historical and the look-ahead prior. To disentangle parameter

from state learning, we include revisions in beliefs generated by the fixed parameter prior

as a control. Revisions in beliefs obtained using the historical and look-ahead priors remain

statistically significant, but revisions in beliefs generated by models with known parameters

are statistically insignificant.

These results imply that learning about parameters and models is a statistically sig-

nificant determinant of asset returns in our sample, confirming our main hypothesis. This

result is strengthened if the agent learns from both consumption and GDP growth. It is

important to note that our agent only learns in real-time and from macroeconomic fun-

damentals, as no asset price data (such as the dividend-price ratio) is used when forming

beliefs. Since the revisions in beliefs obtained from the models with fixed parameters are

statistically insignificant, the evidence questions the standard full-information, rational ex-

pectations implementation of the standard consumption-based model, at least for the models

of consumption dynamics that we consider.9

As mentioned earlier, parameter and model learning generate nonstationary dynamics

and permanent shocks that could have important implications. To investigate these im-

plications, we consider a formal asset pricing exercise assuming Epstein-Zin preferences.

Because the specific time-path of beliefs is important, the usual calibration and simulation

approach used in the literature is not applicable, and we consider the following alternative

pricing procedure. At time t, given beliefs over parameters, models, and states, our agent

prices a levered claim to a future consumption stream, computing quantities such as ex-

8The sign of the effect would in a model depend on the elasticity of intertemporal substitution, and also

on the other moments that change at the same time (volatility, skewness, kurtosis, etc.). In the model

section, we show that this positive relation is consistent with a model with an elasticity of intertemporal

substitution greater than 1.

9Parameter and model learning, on the one hand, and state learning on the other hand are distinct in

our setting because the former generates a non-stationary path of beliefs, while the latter, after an initial

burn-in period, is stationary.



CHAPTER 7. INTRODUCTION 59

ante expected returns and dividend-price ratios.10 Then, at time t + 1, our agent updates

beliefs using new macro realizations at time t+ 1, recomputes prices, expected returns and

dividend-price ratios. From this time series of prices, we compute realized equity returns,

volatilities, etc. Thus, we feed historically realized macroeconomic data into the model

and analyze the asset pricing implications for various models and prior specifications. This

process is required when the time path matters and was previously used in, for example,

Campbell and Cochrane (1999), where habit is a function of past consumption growth. We

use standard preference parameters taken from Bansal and Yaron (2004).

Solving the full pricing problem with priced parameter uncertainty is computationally

prohibitive, as the dimensionality of the problem is too large.11 To price assets in a tractable

way, while still incorporating learning, we follow Piazzesi and Schneider (2010) and Cogley

and Sargent (2009) and use a version of Kreps’ (1994) anticipated utility. This implies

that our agent prices claims at each point in time using current posterior means for the

parameters and model probabilities, assuming those values will persist into the indefinite

future. We do account for state uncertainty when pricing.

This pricing experiment provides additional evidence, along multiple dimensions, for

the importance of learning. Focussing on the 3-state model, we first note that the model

with parameters fixed at the full-sample values has a difficult time with standard asset

pricing moments: the realized equity premium and Sharpe ratio are less than half the values

observed in the data. The volatility of the price-dividend ratio is eighty percent less than

the observed value. Parameter learning uniformly improves all of these statistics, bringing

them close to observed values. The results are, after a burn-in period, similar for the look-

ahead and the historical prior as the agent quickly unlearns the mean parameter beliefs of

the look-ahead prior early in the sample. It is important to note that this is not a calibration

10We do price a levered consumption claim and introduce idiosyncratic noise to break the perfect rela-

tionship between consumption and dividend growth. The dividends are calibrated to match the volatility of

dividend growth and the correlation between dividend and consumption growth.

11As an example, for the 3-state model there are twelve parameters, each with two hyperparameters

characterizing the posteriors. This implies that we would have to have to solve numerically for prices on

a very high dimensional grid, which is infeasible. There are additional difficult technical issues associated

with priced parameter uncertainty, as noted by Geweke (2001) and Weitzman (2007).
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exercise – we did not choose the structural parameters to generate these returns.

The increase in the realized equity premium and return volatility is due to unexpected

revisions in beliefs resulting from the parameter and model learning. In particular, the

average annualized ex ante quarterly risk premium is similar across the models at about

1.7%, but the models with uncertain parameters generate a higher realized equity premium

of about 3.8% to 4.2%, close to the 4.7% observed over the sample. This documents a

dramatic impact of the specific time path of beliefs about parameters and models for stan-

dard asset pricing statistics, at least relative to the fixed parameter, rational expectations

benchmark. This also implies, looking forward, that the perceived equity premium is much

smaller than the realized equity premium over the post World War II period. These points

are consistent with the results in Cogley and Sargent (2008).12

In terms of predictability, the returns generated by learning over time closely match the

data. For the historical and look-ahead priors and for forecasting excess market returns

with the lagged log dividend-price ratio, the generated regression coefficients and R2’s are

increasing with the forecasting horizon and similar to those found in the data. The fixed

parameters case, however, does not deliver significant ex post predictability, although the ex

ante risk premium is in fact time-varying in these models as well because the risk premium

time-variation assuming fixed parameters is too small relative to the volatility of realized

returns to result in significant t-statistics. The intuition for why in-sample predictability

occurs when agents are uncertain about parameters and models is the same as in Tim-

mermann (1993) and Lewellen and Shanken (2002) – unexpected updates in growth and

discount rates impact the dividend-price ratio and returns in opposite directions leading to

the observed positive in-sample relation. Thus, in-sample predictability can be expected

with parameter and model learning. The quantitatively large degree of in-sample relative

12Cogley and Sargent (2008) assume negatively biased beliefs about the consumption dynamics to highlight

the same mechanism and also consider the role of robustness. In their model, the subjective probability of

recessions is higher than the ’objective’ estimate from the data. The results we present here are consistent

with their conclusions, but our models are estimated from fundamentals in real-time, which allows for an

out-of-sample examination of the time-series of revisions in beliefs. Further, we allow for learning over

different models of the data generating process, as well as all the parameters of each model.
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to out-of-sample predictability we find is consistent with the literature.13

We also note that the model exhibits volatile long maturity risk-free yields, consistent

with the data. Learning about fixed quantities such as models or parameters generate

permanent shocks that affect agents’ expectations of the long-run (infinite-horizon) distri-

bution of consumption growth. This is different from existing asset pricing models where

only stationary variables affect marginal utility growth (see, e.g., Bansal and Yaron (2004),

and Wachter’s (2005) extension of Campbell and Cochrane (1999) model, as well as our

fixed parameters benchmark model). In these models, long-run (infinite-horizon) risk-free

yields are constant as the transitory shocks to marginal utility growth die out in the long

run. This is additional evidence supporting a learning-based explanation relative to the

fixed parameters alternative.

In conclusion, our results strongly support the importance of parameter and model

learning for understanding the joint behavior of consumption and asset prices in the U.S.

post World War II sample. First, parameter and model learning leads to a time path

of belief revisions that are correlated with realized equity returns, controlling for realized

consumption growth. Second, the time series of beliefs help explain the time-series of the

price level of the market (the time-series of the price-dividend ratio) in a general equilibrium

model. Third, beliefs display strong nonstationarity over time, driving a wedge between ex

ante beliefs and ex post realizations that is absent in rational expectations models. Fourth,

permanent shocks to beliefs generate permanent shocks to marginal utility growth. These

features help explain common asset pricing puzzles such as excess return volatility, the

high sample equity premium, the high degree of in-sample return predictability, and the

high volatility of long-run yields, all relative to a fixed parameter alternative. The results

are generated by real-time learning from consumption (and GDP growth), using standard

preference parameters without directly calibrating to asset returns. In this sense the results

are entirely “out-of-sample.”

13For example, Fama and French (1988) document a high degree of in-sample predictability of excess

(long-horizon) stock market returns using the price-dividend ratio as the predictive variable. On the other

hand, Goyal and Welch (2008) and Ang and Bekaert (2007) document poor out-of-sample performance of

these regressions in the data, and the historical and look-ahead prior learning models presented here are

consistent with this evidence.
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Chapter 8

The Environment

8.1 Model

We follow a large literature and assume an exogenous Markov or regime switching process

for aggregate, real, per capita consumption growth dynamics. Log consumption growth,

∆ct, evolves via:

∆ct = µst + σstεt, (8.1)

where εt are i.i.d. standard normal shocks, st ∈ {1, ..., N} is a discretely-valued Markov state

variable, and
(
µst , σ

2
st

)
are the Markov state-dependent mean and variance of consumption

growth. The Markov chain evolves via a N ×N transition matrix Π with elements πij such

that Prob[st = j|st−1 = i] = πij , with the restriction that Nj=1πij = 1. The fixed parameters

of the N -state model contain the means and variances in each state,
{
µn, σ

2

n

}N
n=1

as well

as the elements of the transition matrix. The transition matrix controls the persistence of

the Markov state.

Markov switching models are flexible and tractable and have been widely used since

Mehra and Prescott (1985) and Rietz (1988). By varying the number, persistence, and

distribution of the states, the model can generate a wide range of economically interesting

and statistically flexible distributions. Although the εt’s are i.i.d. normal and the distribu-

tion of consumption growth, conditional on st and parameters, is normally distributed, the

distribution of future consumption growth is neither i.i.d. nor normal due to the shifting

Markov state. This time-variation induces very flexible marginal and predictive distribu-
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tions for consumption growth. These models are also tractable, as it is possible to compute

likelihood functions and filtering distributions, given parameters.

We consider two and three state models and also consider a restricted version of the

two state model generating i.i.d consumption growth by imposing the restriction π11 = π21

and π22 = π12 = 1− π11. Under this assumption, consumption growth is an i.i.d. mixture

of two normal distributions, essentially a discrete-time version of Merton’s (1976) mixture

model. The general two and 3-state models have 6 and 12 parameters, respectively. The

i.i.d. two state model has 5 parameters (µ1, µ2, σ1, σ2 and π11).

It is common in these models to provide business cycle labels to the states. In a 2-state

model, we interpret the two states as ‘recession’ and ‘expansion,’ while the three state model

additionally allows for a ‘disaster’ state.1 Although rare event models have been used for

understanding equity valuation since Rietz (1988), there has been a recent resurgence in

research using these models (see, e.g., Barro (2006, 2009), Barro and Ursua (2008), Barro,

Nakamura, Steinsson and Ursua (2009), Backus, Chernov, and Martin (2009), and Gabaix

(2009)).

8.2 Information and learning

To operationalize the model, additional assumptions are required regarding the economic

agent’s information set. Since we want to model learning similar to that faced by the

econometrician, we assume agents observe aggregate consumption growth, but are uncertain

about the Markov state, the parameters, and the total number of Markov states. We label

these unknowns as state, parameter, and model uncertainty, respectively. We assume agents

are Bayesian, which means they update initial beliefs via Bayes’ rule as data arrives. Later

in the paper, we develop an extension to this model where agents can also learn from a

vector of additional macro variables and consider the case of additional learning from GDP

growth data.

1We do not consider, for instance, 1- or 4-state models as the Likelihood ratios of these relative to the 2-

or 3-state model show that the 2- and 3-state models better describe the data. As we will show, however,

there is some time-variation in whether a 2- or 3-state model matches the data better, which is one of the

reasons we entertain both of these as alternative models.
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The learning problem is as follows. We consider k = 1, ...,K models, {Mk}Kk=1, and

in model Mk, the state variables and parameters are denoted as st and θ, respectively.2

The distribution p
(
θ, st,Mk|yt

)
summarizes beliefs after observing data yt = (y1, ...yt). To

understand the components of the learning problem, we can decompose the posterior as:

p
(
θ, st,Mk|yt

)
= p

(
θ, st|Mk, y

t
)
p
(
Mk|yt

)
. (8.2)

p
(
θ, st|Mk, y

t
)

solves the parameter and state “estimation” problem conditional on a model

and p
(
Mk|yt

)
provides model probabilities. It is important to note that this is a non-trivial,

high-dimensional learning problem, as posterior beliefs depend in a complicated manner on

past data and can vary substantially over time. The dimensionality of the posterior can be

high, in our case more than 10 dimensions.

One of our primary goals is to characterize and understand the asset pricing implications

of the transient process of learning about the parameters, states, and models.3 Learning

generates a form of nonstationarity, since parameter estimates and model probabilities are

changing through the sample. When pricing assets, this can lead to large differences between

ex ante beliefs and ex post outcomes, as shown in Cogley and Sargent (2008). Given this

nonstationarity, we are concerned with understanding the implications of learning based on

the specific experience of the U.S. post-war economy.4

To operationalize the learning problem, we need to specify the prior distribution, the

data the agent uses to update beliefs, and develop an econometric method for sampling from

the posterior distribution. In terms of data, we in a benchmark case assume that agents

learn only from observing past and current consumption growth, a common assumption in

2This is a notational abuse. In general, the state and dimension of the parameter vector should depend on

the model, thus we should superscript the parameters and states by ‘k’, θk and skt . For notational simplicity,

we drop the model dependence and denote the parameters and states as θ and st, respectively.

3These type of problems received quite a bit of theoretical attention early in the rational expectations

paradigm - see for example Bray and Savin (1986) for a discussion of model specification and convergence

to rational expectations equilibria by learning from observed outcomes.

4This is different from the standard practice of looking at population or average small-sample uncondi-

tional asset price and consumption growth moments from a model calibrated to the U.S. postwar data – we

are looking at a single outcome corresponding to the U.S. post-war economy.
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the learning literature (see, e.g., Cogley and Sargent (2008) and Hansen and Sargent (2009)).

The primary data used is the ‘standard’ data set consisting of real, per capita quarterly

consumption growth observations obtained from the Bureau of Economic Analysis (the

National Income and Product Account tables) from 1947:Q1 until 2009:Q1.

8.3 Initial beliefs

The learning process begins with initial beliefs or the prior distribution. In terms of func-

tional forms, we assume proper, conjugate prior distributions (Raiffa and Schlaifer (1956)).

One alternative would be flat or ‘uninformative’ priors, but this is not possible in Markov

switching models, as this creates identification issues (the label switching problem) and

causes problems sampling from the posterior.5 Conjugate priors imply that the functional

form of beliefs is the same before and after sampling, are analytically tractable for econo-

metric implementation, and are flexible enough to express a wide range initial beliefs.

For the mean and variance parameters in each state,
(
µi, σ

2
i

)
, the conjugate prior is

p(µi|σ2
i )p(σ

2
i ) ∼ NIG(ai, Ai, bi, Bi), where NIG is the normal/inverse gamma distribution.

The transition probabilities are assumed to follow a Beta distribution in 2-state specification

and its generalization, the Dirichlet distribution, in models with three states. Calibration

of the hyperparameters completes the specification.

We endow our agent with economically motivated initial beliefs to study how learning

proceeds from various starting points. We consider three prior distributions and use an

‘objective’ approach to calibrate the prior parameters. The first, the ‘historical prior,’ uses

a training sample to calibrate the prior distribution. Training samples are the most common

way of generating objective prior distributions (see, e.g., O’Hagan (1994)). In this case, an

5The label switching problem refers to the fact that the likelihood function is invariant to a relabeling

of the components. For example, in a two-state model, it is possible to swap the definitions of the first and

second states and the associated parameters without changing the value of the likelihood. The solution is to

impose parameter constraints in optimization for MLE or to use informative prior distributions for Bayesian

approaches. These constraints/information often take the form of an ordering of the means or variances of

the parameters. For example in a two state model, it is common to impose that µ1 < µ2 and/or σ1 < σ2 to

breaks the symmetry of the likelihood function.
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initial data set is used to provide information on the location and scale of the parameters.

In our application, we use the annual consumption data from Shiller from 1889 until 1946.

Given the prior generated from the training sample, learning proceeds on the second data

set – in our case, the post World War II sample.6

The second is called the ‘look-ahead prior.’ This prior sets the prior mean for each

parameter equal to full-sample maximum likelihood estimates using the post World War

II sample, similar to the procedure employed in an ‘Empirical Bayes’ approach. The prior

variances are chosen to be relatively flat around these full-sample estimates, in order to

allow for meaningful learning about the parameters as new data arrives, without running

into label-switching identification problems. This approach violates the central idea of the

Bayesian approach, as the prior contains information from the sample, but it is useful for

analyzing the evolution of parameter uncertainty through the post World War II sample.

The main differences between the historical and the look-ahead priors are that the historical

priors have on average higher consumption growth volatility, shorter expansions, and longer

recessions. For the 3-state model, the disaster state is also more severe in the historical

prior, reflecting the Great Depression.

The third is called the ‘fixed parameter’ prior. This is a point-mass prior located at the

end-of-sample estimates. In this case, the agent only learns about the latent Markov state.

This prior mimics the typical rational expectations approach and allows us to separately

identify the role of state and parameter learning, since the other priors have both state and

parameter learning.

The details of the priors, the specific prior parameters chosen, as well as a description

of the econometric technique we apply to solve this high-dimensional learning problem

(particle filtering) are given in the Appendix.

6Romer (1989) presents evidence that a substantial fraction of the volatility of macro variables such as

consumption growth pre-WW2 is due to measurement error. To alleviate this concern, we set the prior mean

over the variance parameters to a quarter of the value estimated over the training sample. See the Appendix

for further details.
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Chapter 9

Time-series of subjective beliefs

This section characterizes the learning process. We first discuss state, parameter, and model

learning and their implications for the time series of conditional consumption moments, as

perceived by the Bayesian agent. Next, we empirically investigate how revisions in the

agent’s beliefs are related to stock market returns. We also consider the case of learning

from GDP data, in addition to consumption data. In the following section, we embed these

beliefs in a general equilibrium model and discuss the asset pricing implications in more

detail.

9.1 State and parameter learning

Conditional on a model specification, our agent learns about the Markov state and the

parameters, with revisions in beliefs generated by a combination of data, model specification,

and initial beliefs. To start, consider the agent’s beliefs about the current state of the

economy, st, where state 1 is an ‘expansion’ state, state 2 the ‘contraction’ state and, if a

3-state model, state 3 the ‘disaster’ state. Estimates are given by

E
[
st|Mk, y

t
]

=

∫
stp
(
θ, st|Mk, y

t
)
dθdst.

Note that these are marginal mean state beliefs, as parameter uncertainty is integrated out.

Although st is discrete, the mean estimates need not be integer valued. Figure 9.1 displays

the posterior state beliefs over time, for each model and for different priors.
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There are a number of notable features of these beliefs. NBER recessions (shaded yellow)

and expansions are clearly identified in the models. The only exceptions are the recessions

in the late 1960s and 2001, which were not associated with substantial consumption de-

clines. Comparing the panels, one area in which the models generate strong differences is

persistence of the states. The i.i.d. model identifies recessions as a one-off negative shock,

but since shocks are i.i.d., the agent does not forecast that the recession state will persist

with high likelihood. In contrast, the 2- and 3-state models clearly show the persistence of

the recession states. Disaster states are rare – after the initial transient post war period,

there are only really two observations that place even modest probability on the disaster

state – the recession in 1981 and the financial crisis at the end of 2008. This implies that

disaster states are nearly ‘Peso’ events in the post WW2 sample.

The agent’s beliefs are quite volatile early in the sample in all of the models. This is

not surprising. Since initial parameter beliefs are highly uncertain, the agent has a difficult

time discerning the current state as parameter uncertainty exacerbates state uncertainty.

As the agent learns, parameter uncertainty decreases and state identification is easier. It

is important to note that even with full knowledge of the parameters, the agent will never

be able to perfectly identify the state.1 The results also show that the priors do not have a

large impact on the mean state beliefs, at least for the unrestricted 2- and 3-state models,

as the posterior beliefs are roughly similar for the historical and look-ahead priors.

Next, consider beliefs over parameters. Due to the large number of parameters and in the

interests of parsimony, we focus on a few of the more economically interesting and important

parameters. For the 2-state models, the top panels of Figure 9.2 display posterior means of

the beliefs over σ1 and σ2. Notice that for the Historical prior the conditional volatilities

slowly decrease, after a short (about 5 year) burn-in period, essentially throughout the

sample. This is a combination of the Great Moderation (realized consumption volatility

did decrease over the post-war sample) and the initial beliefs, which based on the historical

experience expected higher consumption growth volatility. Interestingly, for the look-ahead

1The posterior variance of the state, var
[
st|Mk, y

t
]
, does decline over time due to decreasing parameter

uncertainty. This will be discussed further when we use GDP growth as an additional observation to help

identify the state.
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prior, which is centered at the end of sample posterior values, the agents quickly unlearns the

low full sample consumption growth volatility, and after about 5-year burn-in, the volatility

is close to that observed for the historical prior. This occur because volatility was higher in

the first portion of the sample. The subsequent decline in the volatility in the good state is

quantitatively large (about a 30% drop).

The lower panels in Figure 9.2 display the transition probabilities, π11 and π22. After

the burn-in period, the first is essentially increasing over the sample, while the latter is

decreasing. That is, 50 years of, on average, long expansions and high consumption growth

leads to revisions in beliefs that are manifested in higher probabilities of staying in the good

state and lower probabilities of staying in recession state. The probability of staying in a

recession, conditional on being in a recession, goes down from about 0.85 to 0.75. Clearly,

such positive shocks to the agents’ perception of the data generating process will lead to

higher ex post equity returns than compared to ex ante expectations.

The first three panels of Figure 9.3 displays estimates of the mean parameters, E
[
µi|Mk, y

t
]

for i = 1, 2, 3, as well as a posterior two standard deviation band for the 3-state model using

the historical prior. Learning is most apparent in the good state and least apparent in the

disaster state. This is intuitive, since the economy spends most of its time in the good state

and little, if any, time in the disaster state. This provides empirical evidence supporting

the argument that a high level of parameter uncertainty is a likely feature of a model with

a rarely observed state and is an important feature for disaster risk models (see also Chen,

Joslin, and Tran, 2010).

The fourth, lower right panel shows how the speed of learning differs in the three models

we consider. We use the conditional variance over the infinite horizon mean of quarterly

consumption growth, V ar
(
E [∆ct+∞] |yt

)
, as a measure of the amount of parameter un-

certainty (with no parameter uncertainty, the long-run mean of consumption growth is

constant in all models), and show this variance for the unrestricted 2- and 3-state models

normalized by the variance from the simpler i.i.d. model. The plot shows that learning

happens faster in the simpler i.i.d. model in that both the variance ratios quickly increases.

The unrestricted 2-state model settles at a variance about 50% higher than for the i.i.d. 2-

state model, while the 3-state model increases its relative amount of parameter uncertainty
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Figure 9.4: Marginal Model Probabilities under Different Priors

to about 3 times that of the i.i.d. model at the end of the sample. This is due to the very

slow learning about the disaster state and the difficulty present in learning the transition

probabilities.

There is additional interesting time-variation in beliefs about the parameters, but this

time-variation is best summarized via the total impact across all parameters, which is

measured via predictive moments and discussed in the next section.
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9.1.1 Beliefs about models and consumption dynamics

Figure 9.4 shows the marginal model probabilities, p
(
Mk|yt

)
, for each of the models we

consider for the Historical and the Look-ahead priors, respectively.2 For simplicity, the

prior probability of each model was set to 1/3. Note first that the posterior probability of

the i.i.d. model decreases towards zero for both priors. Thus, i.i.d. consumption growth is

rejected by a Bayesian agent that updates by observing past realized consumption growth.

Although not reported for brevity, this conclusion is robust even if the prior probability

of the i.i.d. model is set to 0.95 - in this case it takes somewhat longer (but still just a

little over half the sample) for the probability of the i.i.d. model to drop very close to

zero. The 3-state model also sees a reduction in its likelihood and ends at about 10% and

20% probability levels at the end of the sample for the Historical and Look-ahead priors,

respectively. The Look-ahead prior has a less severe disaster state, as it does not reflect the

Great Depression, and this is why the probability of the 3-state model is higher in this case.

As mentioned in the introduction, a single large negative consumption shock would quickly

change these probabilities. In sum, we observe large changes in the model uncertainty over

the sample.

The fact that the agent can learn that consumption growth is not i.i.d. is important.

Many asset pricing models specify i.i.d. consumption growth with the implicit assumption

that it is not possible or difficult to detect non-i.i.d. dynamics in consumption. Our results

show that agents, using only consumption growth data, can detect non-i.i.d. dynamics, and

can do so in real time, which is an even stronger result. The agent does not need to wait

until the end of the sample. This result holds for various prior specifications and is robust

to time-aggregation.3

2Note that marginal model probabilities (i.e., where parameter uncertainty is integrated out) penalizes

extra parameters as more sources of parameter uncertainty tends to flatten the likelihood function. Thus,

it is not the case, as we see an example of here, that a 3-state model always dominates a 2-state model in

Bayesian model selection.

3In the Appendix, we show that taking out an autocorrelation of 0.25 from the consumption growth data,

which is what time-aggregation of i.i.d. data predicts (see Working (1960)), does not qualitatively change

these results - if anything it makes the rejection of the i.i.d. model occur sooner. The same is true if we
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Figure 9.5: Quarterly Expected Consumption Growth
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The results of the previous section indicate that beliefs about the parameters vary

through the sample, even for the look-ahead prior, but it is not clear from this how much

variation in conditional moments is present.4 To provide asset-pricing relevant measures,

we report the agent’s beliefs regarding the first four moments of conditional consumption

growth and model probabilities. All of these quantities are marginal, integrating out pa-

rameter, state, and/or model uncertainty. For example, the predictive mean for a given

model, Mk, is

E
[
∆ct+1|Mk, y

t
]

=

∫
∆ct+1p

(
∆ct+1|θ, st,Mk, y

t
)
p
(
θ, st|Mk, y

t
)
dθdst.

In describing these moments, we generally abstract from the first ten years and treat it is

a ’burn-in’ period, in order to allow the prior some time to adjust to the data, as there is

some transient volatility over these first few years.

The top two panels in Figure 9.5 (for historical and look-ahead priors, respectively)

display the conditional expected quarterly consumption growth for each model. The two and

3-state models generate relatively modest differences in this moment – both pick up business

cycle fluctuations in expected consumption growth, with the 3-state model identifying the

recessions in the early 80’s and the financial crisis in ’08 as severe. Persistent recessions

are missing from the i.i.d. model, as expected. All three models exhibit a low frequency

increase in expected consumption growth over the first half of the sample, due to parameter

learning.

The bottom panel of Figures 9.5 shows model averaged expected quarterly consumption

growth for the two priors. In the first third of the sample, the presence of the i.i.d. model

smooths business cycle fluctuations in expected consumption growth. Thereafter, only

the 2- and 3-state models are relevant and model uncertainty has a minor impact as the

conditional expected growth is similar in these models. Overall, recessions are associated

with a mean quarterly consumption growth of about 0.3%, while the mean consumption

purge the data of its full sample first order autocorrelation.

4As an example, consider the conditional volatility of consumption growth. A decrease in the probability

of the bad state, which has higher consumption growth volatility, could be offset by an increase in the

consumption volatility in the good state, σ1, keeping the total conditional volatility of consumption growth

constant.
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Figure 9.6: Quarterly Predictive Consumption Growth Standard Deviation

growth in expansions is about 0.6%. Since business cycles are relatively persistent, these

fluctuations in conditional consumption growth are a source of long-run consumption risk,

akin to that of Bansal and Yaron (2004). However, the lower frequency fluctuations we

observe in expected consumption growth, which is due to parameter learning, constitute

”truly” long-run risk, as shocks to parameter beliefs are permanent.

Turning to the conditional volatility of quarterly consumption growth, Figure 9.6 shows

that for both priors there is a downward trend in consumption growth volatility through

the sample, with marked increases during recessions for the non-i.i.d. models. Again, the

bottom panel shows the belief about conditional standard deviation for each prior when
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model uncertainty is integrated out. Model probabilities could be driven by unexpected

volatility, but this does not appear to be a primary determinant. Conditional consumption

growth volatility is not particularly affected by model uncertainty, since both the two and

the 3-state models have similar volatility patterns, and since the i.i.d. model is essentially

phased out in the first third of the sample.

The secular decline is largely driven by downward revisions in estimates of the volatility

parameters as realized consumption growth was less volatile in the second half of this

century. This is particularly strong for the historical prior, as the conditional volatility of

consumption growth decreases from about 1% per quarter to about 0.5%. Interestingly,

the look-ahead prior has a similar trend, after a short burn-in period, as the prior’s low

consumption growth volatility is quickly unlearned, though the size of the effect is about

half as large. This is the Great Moderation - the fact that consumption volatility has

decreased also over the post-war sample. In the models considered here, the agent learning

in real-time perceives this decrease to happen gradually, in contrast to studies that find ex

post evidence of structural breaks or regime shifts at certain dates.

Every recession is associated with higher consumption growth volatility, although the

size of the increase varies. The largest increase, on a percentage basis, occurs with the

financial crisis of 2008. The increase is largest in the 3-state model, as the mean state belief

at this time approaches the third state, which has a very high volatility. There is little

updating about the volatility of the disaster state through the sample, since there have

been no prolonged visits to this state. Thus, this reflects the fear that prevailed in the fall

of 2008 that the economy was potentially headed into a depression not seen since the 1930s.

This econometric result squares nicely with anecdotes from the crisis.

Figure 9.7 shows the time-series of conditional consumption growth skewness for the

both priors, again with the model averaged estimates in the bottom panel. The time-

variation in the conditional skewness is dominated by business cycle variation for the two

and 3-state models, and there is a slight downward trend, as the probability of a disaster and

recession decrease. When the economy is in a recession, consumption growth is naturally

less negatively skewed for two reasons: (1) there is a high probability that the economy
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Figure 9.7: Quarterly Predictive Consumption Growth Skewness



CHAPTER 9. TIME-SERIES OF SUBJECTIVE BELIEFS 80

jumps to a higher (i.e. better) state and (2) expected consumption volatility is high, which

tends to decrease skewness. Note that in terms of skewness, the 3-state model, with its

severe recession (disaster) state, is quite different from the 2-state model. Thus model

uncertainty plays a larger role for the agent’s overall consumption beliefs in terms of the

skewness. The 3-state model, especially for the Historical prior, strongly impacts the total

perception of conditional consumption growth skewness as given in the bottom panel.

Figure 9.8 shows the time-series of conditional consumption growth kurtosis for the both

priors. Conditional kurtosis is lower in bad states as these states are the least persistent

and volatility is highest. Large, rare, outcomes are more likely when the economy is in the

good state. This has potentially interesting option pricing implications (see, e.g., Backus,

Chernov, and Martin (2009)), as the skewness and kurtosis will be related to volatility

smiles. It is worth noting that parameter uncertainty gives an extra ’kick’ to conditional

skewness and kurtosis measures relative to the case of fixed parameters, where the skewness

and kurtosis both move little over time (the fixed parameter case is not reported here for

brevity). Both for skewness and kurtosis, there is clear evidence of parameter learning over

the business cycle: the skewness becomes more negative and the kurtosis higher the longer

an expansion last, reflecting updating of the transition probabilities, which reflect business

cycle dynamics. Similar to skewness, there are now relatively large differences between the

2- and 3-state models. The 3-state model has significantly higher conditional kurtosis than

the 2-state model, due to the presence of the disaster-state. Interestingly, the differences

are greater in expansions than in recessions, again due to the ’rare’ nature of recessions

and, especially, disasters. In terms of the conditional kurtosis after model uncertainty is

integrated out (bottom panel), the 3-state model has large impact on kurtosis even at the

end of the sample where the probability of this model being the right model is low. Thus,

among the models considered here, model uncertainty and its dynamic behavior is likely to

have the strongest implications for assets such as out-of-the-money options that are more

sensitive to the tail behavior of consumption growth.
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Chapter 10

Does learning matter for asset

prices?

10.1 A new test for the importance of learning

The previous results indicate that the agent’s beliefs – about parameters, moments, and

models – vary substantially at both very low frequencies and over the business cycle. If

learning is an important determinant of asset prices, changes in beliefs should be a significant

determinant of asset returns. This is a fundamental test of the importance of learning about

the consumption dynamics. For example, if agents learn that expected consumption growth

is higher than previously thought, this revision in beliefs will be reflected in the aggregate

wealth-consumption ratio (if the elasticity of intertemporal substitution is different from

one). In particular, if the substitution effect dominates, the wealth-consumption ratio

will increase when agents revise their beliefs about the expected consumption growth rate

upwards (see, e.g., Bansal and Yaron (2004)). As another example, if agents learn that

aggregate risk (consumption growth volatility) is lower than previously thought, this will

generally lead to a change in asset prices as both the risk premium and the risk-free rate

are affected. In the Bansal and Yaron (2004) model, an increase in the aggregate volatility

leads to a decrease in the stock market’s price-dividend ratio.

To test this, we regress excess quarterly stock market returns (obtained from Kenneth

French’s web site) on changes in beliefs about expected consumption growth and expected
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consumption growth variance. This is a particularly stringent test of learning, which to our

knowledge has not been done in the previous literature. We use the beginning of period

timing for the consumption data here and elsewhere in the paper.1 The regressors are the

shocks, Et (∆ct+1)−Et−1 (∆ct+1) and σt (∆ct+1)−σt−1 (∆ct+1). Notice that the only thing

that is changing is the conditioning information set as we go from time t− 1 to time t; the

regressors are revisions in beliefs. We calculate these conditional moments for each prior

integrating out state, model and parameter uncertainty. The first 10 years of the sample

are used as a burn-in period to alleviate any prior misspecification (there is some excess

volatility in state and parameter beliefs in these first years).

Separate regressions are run for the historical and look-ahead priors, and we control

for contemporaneous consumption growth and lagged consumption growth (the direct cash

flow effect). By controlling for realized consumption growth, we ensure that the results are

driven by model-based revisions in beliefs, and not just the fact that realized consumption

growth (a direct cash flow effect) was, for example, unexpectedly high. To separate out the

effects of parameter from state learning, we use revisions in expected consumption growth

beliefs computed from the 3-state model with fixed parameters (set to their full-sample

values) as an additional control.2

Specifications 1 and 2 in Panel A (historical prior) and Panel B (look-ahead prior) in

Table 10.1 show that increases in expected conditional consumption growth are positively

and strongly significantly associated with excess contemporaneous stock returns for both

priors. This result holds controlling for contemporaneous and lagged consumption growth

(the direct cash flow effect), and so we can conclude that revisions in beliefs are significantly

related to shocks to the price-dividend ratio. This is a very strong result, pointing to the

importance of a learning-based explanation for realized stock returns. These results could

1Due to time-averaging (see Working, 1960), Campbell (1999) notes that one can use either beginning of

period or end of period consumption in a given quarter as the consumption for that quarter. The beginning

of period timing yields stronger results than using the end of period convention (although the signs are

the same in the regressions). In principle, the results should be the same, so this is consistent with some

information being impounded in stocks before the consumption data is revealed to the Bureau of Economic

Analysis.

2Using the fixed parameter 2-state model as the control instead does not change the results.
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Table 10.1: Updates in Beliefs versus Realized Stock Returns

Dependent variable: rm,t+1 − rf,t+1 (excess market returns)
Panel A: Historical prior 1 2 3 4 5 6 7

Et+1
[
∆ct+2

]
− Et

[
∆ct+2

]
40.43∗∗∗ 26.00∗∗ 42.41∗∗

(9.36) (11.44) (18.97)

σ2
t+1

[
∆ct+2

]
− σ2

t

[
∆ct+2

]
−36.34∗∗∗ −13.83

(10.90) (10.14)

Controls:

∆ct+1 2.02 7.94∗∗ 3.76∗∗∗

(1.51) (3.12) (1.37)

∆ct 2.31∗ 1.73 2.05

(1.41) (1.43) (1.43)[
Et+1

[
∆ct+2

]
− Et

[
∆ct+2

]]3-state model
θ known

24.98∗∗∗ −1.76

(9.36) (12.82)

−449.17[
Et+1

[
∆ct+2

]
− Et

[
∆ct+2

]]i.i.d. model
θ unknown

(392.94)

R2
adj 8.8% 10.9% 5.9% 8.4% 9.5% 5.0% 9.7%

Panel B: Look-ahead prior 1 2 3 4 5 6 7

Et+1
[
∆ct+2

]
− Et

[
∆ct+2

]
52.44∗∗∗ 29.05∗∗ 39.63∗∗

(11.71) (13.62) (18.42)

σ2
t+1

[
∆ct+2

]
− σ2

t

[
∆ct+2

]
−46.10∗∗∗ −23.26∗

(12.53) (13.43)

Controls:

∆ct+1 2.77∗ 7.78∗∗ 3.51∗∗

(1.56) (3.18) (1.42)

∆ct 2.25∗ 1.74 2.16

(1.38) (1.43) (1.39)[
Et+1

[
∆ct+2

]
− Et

[
∆ct+2

]]3-state model
θ known

24.98∗∗∗ 8.77

(9.36) (10.62)

[
Et+1

[
∆ct+2

]
− Et

[
∆ct+2

]]i.i.d. model
θ unknown

−427.05

(400.75)

R2
adj 7.3% 10.5% 5.9% 7.2% 9.5% 5.3% 10.2%

be driven by parameter or state learning.

Specification 3 shows that the updates in expected consumption growth derived from the

model with fixed parameters (that is, a case with state learning only) are also significantly

related to realized stock returns. The R2, however, is lower than for the case of the full

learning model, and when we include the revisions in beliefs about expected consumption

growth from both the full learning model and the fixed parameters benchmark model in

the regression (specification 4), the updates in expected consumption growth that arise

in a model with fixed parameters are insignificant, while the belief revisions from the full

learning model remain significant. That is, updates in expectations when learning about

about parameters, states, and models are more closely related to realized stock market
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returns than the corresponding updates in expectations based on a single model with known

parameters but hidden states estimated on the full sample. To our knowledge, this is the

first direct comparison of learning about models and parameters versus the traditional

implementation of the rational expectation explanations in terms of explaining the time-

series of realized stock returns using the actual sequence of realized macro shocks.

This result is driven by the nonlinear process of jointly learning about parameters and

states. In particular, specification 5 shows that updates in beliefs from the i.i.d. model

cannot be distinguished from the direct cash flow effect. The i.i.d. model captures param-

eter uncertainty about the long-run mean and variance, but not the state dynamics. The

fixed parameter model (specification 4) captures the transitory state learning, but not the

parameter dynamics.3 Thus, it is the updates in beliefs stemming from the more compli-

cated, non-i.i.d. models’ learning problem that drives the increased correlation with stock

returns, relative to the direct cash flow effect. Recall also that our agent quickly learned

that the i.i.d. model is not likely, relative to the other specifications.

For the variance (regression specifications 6 and 7 in Table 10.1) we get the opposite

result, as one would expect (at least with a high elasticity of intertemporal substitution,

as we will use later in the paper): unexpected increases in conditional consumption growth

variance are associated with negative contemporaneous stock returns. This result is not

significant at the 5% level when including contemporaneous and lagged consumption growth

in the regressions (specification 7). This does not mean there is no effect; we just cannot

distinguish it from the direct cash flow effect when learning from consumption data alone.

To summarize, we find strong evidence that the updates in beliefs elicited from our

model/prior combinations are associated with actual updates in agent beliefs at the time,

as proxied by stock market returns. Again, it is important to recall that no asset price data

was used to generate these belief revisions.

3One can show analytically that in a simple i.i.d. model, updates in expectations of consumption growth

are very close to linear in the realized consumption growth.
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10.2 Learning from additional macro variables

Agents have access to more than just aggregate consumption growth data when forming

beliefs. Here we provide one approach for incorporating this additional information and

apply this methodology to learning from quarterly GDP growth, in addition to consumption.

Suppose xt represents the common growth factor in the economy and evolves via:

xt = µst + σstεt, (10.1)

where εt
i.i.d.∼ N (0, 1), and st is the state of the economy, which follows the same Markov

chains specified earlier. Consumption growth ∆c and J additional variables Yt = [y1
t , y

2
t , ..., y

J
t ]′

are assumed to follow:

∆ct = xt + σcε
c
t , (10.2)

where

yjt = αj + βjxt + σjε
j
t , for j = 1, 2, ..., J (10.3)

and εct
i.i.d.∼ N (0, 1), and εjt

i.i.d.∼ N (0, 1) for any j. Note that the coefficients in equation

(10.3) are not state dependent, which implies that the additional variables will primarily aid

in state identification. The specification allows for the additional observation variables to be

stronger or weaker signals of the underlying state of the economy than consumption growth.

For the case of GDP growth, this captures the idea that investment is more cyclical than

consumption, which makes GDP growth a better business cycle indicator. The linearity of

the relationship is an assumption that is needed for conjugate priors.

The similar conjugate priors for the parameters are applied. For each state st = i,

p(µi|σ2
i )p(σ

2
i ) ∼ NIG(ai, Ai, bi, Bi), where NIG is the normal/inverse gamma distribution.

σc is assumed to follow an inverse gamma distribution IG(bc, Bc), and for each j = 1, 2, ..., J ,

p([αj , βj ]
′|σ2

j )p(σ
2
j ) ∼ NIG(aj , Aj , bj , Bj), where p([αj , βj ]

′|σ2
j ) is a bivariate normal distri-

bution N (aj , Ajσ
2
j ), aj is a 2 × 1 vector and Aj is a 2 × 2 matrix. Particle filtering is

straightforward to implement in this specification by modifying the algorithm described in

the Appendix.
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To analyze the implications of additional information, we consider learning using real,

per capita U.S. GDP growth as an additional source of information. This exercise generates

a battery of results: time series of parameter beliefs, conditional moments, and model

probabilities. We report only a few interesting statistics in the interests of parsimony.

Figure 10.1 shows that the state beliefs do not change dramatically, although GDP growth is

typically thought of as more informative about business cycle fluctuations than consumption

growth. To characterize how the additional data aids in state identification, we compute

posterior standard deviations for the states, std
[
st|Mk, y

t
]
, again integrating out parameter

uncertainty. The top Panel of Figure 10.2, shows that indeed the uncertainty about the

state is much lower (about half) than what was the case when using consumption growth

as the only source of information. Thus, adding GDP growth to the agent’s information set

increases the precision of the state identification.4 The increased certainty about the state

improves parameter identification also, which is confirmed in the two lower Panels in Figure

10.2. Here the uncertainty about the good and bad states mean consumption growth rates

is lower, after a 10-year burn-in, than in the case using consumption as the only source of

information.

Figure 10.3 shows that the model specification results are similar, as the data again

favors the 2-state model, leaving the 3-state model with a very low probability at the end of

the sample. It is noteworthy, however, that the probability of the 3-state (disaster) model

again increases at the onset of the financial crisis in 2008.

Adding GDP growth also results in a greater difference in expected consumption growth

across the states. Figure 10.4 shows that the difference in the expected consumption growth

rate in recessions versus expansions is about 0.6% per quarter, versus about 0.3% in the case

of consumption information only (see Figure 9.5). The dynamic behavior of the conditional

standard deviation of consumption growth is not significantly changed (not reported for

brevity).

4It is technically feasible to impose cointegration between consumption and GDP by including the log

consumption to GDP ratio on the right hand side of Equation (10.3). We thank Lars Hansen for pointing

this out.
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Figure 10.1: Evolution of Mean State Beliefs with GDP
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Figure 10.2: Uncertainty about state identification with/without GDP
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Figure 10.3: Marginal Model Probabilities with GDP.
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Figure 10.4: Conditional Expected Consumption Growth with GDP



CHAPTER 10. DOES LEARNING MATTER FOR ASSET PRICES? 92

Table 10.2 shows the regressions of contemporaneous stock returns and updates in agent

beliefs about conditional expected consumption growth and consumption growth variance,

as calculated from this extended model. The results are similar, but in fact overall stronger

than the results using only consumption growth. Updates in agent expectations about these

moments from the full learning model are significantly related to stock returns, also after

controlling for contemporaneous and lagged consumption growth and updates in expected

consumption growth derived from a model with fixed parameters. Again, this evidence

indicates that learning about parameters and models is an important feature of the data.

10.3 Additional asset pricing implications

We now embed the beliefs of our learning agent in a general equilibrium asset pricing model.

There are considerable computational and technical issues that need to be dealt with when

considering such an exercise. First, the state space is prohibitively large. The 3-state model,

as an example, have 12 parameters governing the exogenous consumption process, and the

beliefs over each parameter are governed by 2 hyper-parameters. Thus, there are 24 state

variables, in addition to beliefs over the state of the economy and the corresponding param-

eter and state beliefs for the i.i.d. and the general 2-state models. Second, as pointed out

by Geweke (2001) and Weitzmann (2007), some parameter distributions must be truncated

in order for utility to be finite. This introduces additional nuisance parameters.

Given the computational impediments, we follow Sargent and Cogley (2008) and Piazzesi

and Schneider (2010) and apply the principle of ”anticipated utility” to the pricing exercise

(originally suggested by Kreps (1998)). Under this assumption, the agents maximize utility

at each point in time assuming that the parameters and model probabilities are equal to

the agents’ current mean beliefs and will remain constant forever. Of course, at time t+ 1

the mean parameter beliefs will in general be different due to learning. While parameter

and model uncertainty are not priced risk factors in this framework, they are nonetheless

important for the time-series of asset prices as updates in mean parameter and model beliefs

lead to changes in prices. We do integrate out state uncertainty in the pricing exercise, so

state uncertainty is a priced risk factor (as in, e.g., Lettau, Ludvigson, and Wachter (2008)).
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Table 10.2: Updates in Beliefs versus Realized Stock Returns with GDP

Dependent variable: rm,t+1 − rf,t+1 (excess market returns)

Panel A: Historical Prior 1 2 3 4 5

Et+1 [∆ct+2]− Et [∆ct+2] 40.68∗∗∗ 40.52∗∗∗ 39.77∗∗

(6.62) (8.99) (19.13)

σ2
t+1 [∆ct+2]− σ2

t [∆ct+2] −56.94∗∗∗ −46.25∗∗∗

(10.79) (22.37)

Controls:

∆ct+1 −0.70 1.02

(1.56) (1.52)

∆ct 1.93 2.36∗

(1.33) (1.41)

[Et+1 [∆ct+2]− Et [∆ct+2]]3-state model
θ known 0.60

(10.47)

R2
adj 15.4% 15.6% 15.0% 11.9% 13.3%

Panel B: Look-ahead Prior 1 2 3 4 5

Et+1 [∆ct+2]− Et [∆ct+2] 33.48∗∗∗ 30.84∗∗∗ 28.41∗∗

(5.56) (7.24) (14.03)

σ2
t+1 [∆ct+2]− σ2

t [∆ct+2] −67.93∗∗∗ −48.59∗∗

(13.76) (17.94)

Controls:

∆ct+1 0.01 1.88

(1.40) (1.69)

∆ct 2.11∗ 2.50∗

(1.33) (1.41)

[Et+1 [∆ct+2]− Et [∆ct+2]]3-state model
θ known 3.89

(9.20)

R2
adj 14.5% 15.0% 14.1% 9.3% 11.9%
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The anticipated utility approach reduces the number of state variables to three (the belief

about the state in the general 2-state model, and the 2-dimensional belief about the state

in the 3-state model).5

The purpose of the pricing exercise is to examine what features of the post-WW2 U.S.

aggregate consumption and asset price data a realistic, general learning problem can help

explain. Since we do not integrate out the parameter and model uncertainty in the pricing

exercise, we focus on two aspects of the model that are likely to be robust to the introduction

of priced parameter and model uncertainty.

1. Ex-ante versus ex post

With learning ex ante expectations need not in general equal average ex post out-

comes, which is the assumption in the typical rational expectations implementation.

In the following, we argue that substantial components of the observed equity pre-

mium, excess return volatility, the degree of in-sample excess return predictability,

and the time-series of the aggregate price-dividend ratio can be explained by the

(nonstationary) time-path of mean parameter beliefs.

2. Permanent versus transitory shocks

The shocks to mean parameter beliefs are permanent shocks to investor information

sets. This has implications for, for instance, the volatility of long-run bond yields,

and is different from a model with transitory shocks to state variables (such as our

state beliefs, the long-run risk variable in Bansal and Yaron (2004), or the surplus

consumption ratio in Campbell and Cochrane (1999)).

10.3.1 The model

The model is solved at the quarterly frequency, and the representative agent is assumed to

have Epstein and Zin (1989) preferences, which are defined recursively as:

Ut =

{
(1− β)C

1−1/ψ
t + β

(
Et

[
U1−γ
t+1

]) 1−1/ψ
1−γ

} 1
1−1/ψ

, (10.4)

5It would be computationally feasible to account for model uncertainty or to focus on parameter uncer-

tainty over one of the parameters, but we leave such considerations for future research.
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where Ct is the consumption, ψ 6= 1 is the intertemporal elasticity of substitution (IES) in

consumption, and γ 6= 1 is the coefficient of relative risk aversion. These preferences imply

the stochastic discount factor:

Mt+1 = β

(
Ct+1

Ct

)−γ (
β
PCt+1 + 1

PCt

) 1/ψ−γ
1−1/ψ

, (10.5)

where PCt is the wealth-consumption ratio – that is, the price-dividend ratio for the claim

to the stream of future aggregate consumption. The first component of the pricing kernel

is that which obtains under standard power utility, while the second component is present

if the agent has a preference for the timing of the resolution of uncertainty (i.e., if γ 6=

1/ψ). As mentioned earlier, we consider an anticipated utility approach to the pricing

problem in terms of parameter and model uncertainty, while state uncertainty is priced.6

This corresponds to a world where investors understand and account for business cycle

fluctuations, but where they simply use their best guess for the parameters governing these

dynamics.

Our goal in this section is to, for reasonable preference parameters, understand how

learning affects pricing relative to the benchmark case of fixed parameters. Given that

the consumption dynamics are not ex post calibrated (in particular in the historical prior

case) but estimated in real-time, we also do not calibrate preference parameters to match

any particular moment(s). Instead, we simply use the preference parameters of Bansal and

Yaron (2004). Thus, γ = 10, ψ = 1.5, and β = 0.998ˆ3.

Following both Bansal and Yaron (2004) and Lettau, Ludvigson, and Wachter (2008),

we price a levered claim to the consumption stream with a leverage factor λ of 4.5. The

annual consumption volatility over the post-war sample is only 1.34%, and so the systematic

6The model is solved numerically through value function iteration at each time t in the sample, conditional

on the mean parameter beliefs at time t, which gives the time t asset prices. The state variables when solving

this model are the beliefs about the hidden states of the economy for each model under consideration. For

a detailed description of the model solution algorithm, please refer to the Appendix.

Cogley and Sargent (2009) argue that anticipated utility approach is a close approximation to the true

Bayesian approach, although their analysis is with respect to time-separable preferences. Piazzesi and

Schneider (2010) is an example of a recent application of an anticipated utility pricing framework with

Epstein-Zin preferences.
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annual dividend volatility is therefore about 6%. Quarterly log dividend growth is defined

as:

∆dt = λ∆ct + εd,t, (10.6)

where εd,t
i.i.d.∼ N

(
−1

2σ
2
d, σ

2
d

)
is the idiosyncratic component of dividend growth. σd is chosen

to match the observed annual 11.5% volatility of dividend growth reported in Bansal and

Yaron (2004). With these choices of λ and σd we also in fact closely match the sample

correlation they report between annual consumption and dividend growth (0.55).7

Unconditional Moments Table 10.3 reports realized asset pricing moments in the data,

and also those generated by our learning models over the same sample period. The first 10

years are removed as a burn-in period to reduce concerns with regards to prior misspecifi-

cation. We consider cases with and without parameter learning.

The models with parameter uncertainty match the observed equity premium reasonably

well: 4.7% in the data versus 3.8% and 3.4% for the consumption only historical and look-

ahead priors, respectively. The models where GDP is used as an additional signal, which

as reported earlier have a more severe recession state, have average sample excess equity

returns of 4.2% and 4.0% for the historical and the look-ahead priors, respectively. This

compares favorably to the benchmark fixed parameters two and 3-state models which sample

equity premiums are 1.5% and 1.8%, respectively. Thus, allowing for parameter uncertainty

more than doubles the sample risk premiums, despite the fact that parameter and model

uncertainty are not priced risk factors in the anticipated utility pricing framework. The

high sample equity premium arises because of the specific time path of beliefs, which we

discuss next.

The table also reports the average ex ante equity risk premium (ET
[
E
(
Rexcessm,t+1 |It

)]
,

where It denotes the information set (beliefs) of agents at time t and ET [·] denotes the

7The dividend dynamics imply that consumption and dividends are not cointegrated, which is a com-

mon assumption (e.g., Campbell and Cochrane (1999), and Bansal and Yaron (2004)). One could impose

cointegration between consumption and dividends, but at the cost of an additional state variable. Further,

it is possible to also learn about λ and σ2
d. However, quarterly dividends are highly seasonal, which would

severely complicate such an analysis. Further, data on stock repurchases is mainly annual. We leave a

rigorous treatment of these issues to future research.
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Table 10.3: Asset Price Moments

Data Historical prior Look-ahead prior Fixed parameters

1957:Q2- Cons. Cons. + Cons. Cons. + 2-state 3-state

Moments 2009:Q1 only GDP only GDP model model

The real risk-free rate:

ET (rft ) 1.6% 3.8% 3.7% 3.7% 3.7% 3.7% 3.7%

σT (rft ) 1.6% 0.8% 0.9% 0.6% 0.8% 0.7% 0.8%

The dividend claim: dt = λct + εd,t

ex post:

ET (rt − rft ) 4.7% 3.8% 4.2% 3.4% 4.0% 1.5% 1.8%

σT (rt − rft ) 17.1% 15.6% 15.7% 15.5% 15.4% 12.2% 12.4%

Sharpe ratio 0.27 0.24 0.27 0.22 0.26 0.12 0.14

σT (pdt) 0.38 0.26 0.28 0.26 0.29 0.06 0.07

CorrT (pdModel
t , pdData

t ) n/a 0.37 0.53 0.31 0.52 0.24 0.25

ex ante:

ET [Et(rt+1 − rft+1)] n/a 1.5% 1.7% 1.4% 1.6% 1.5% 1.8%

sample average). The cases with parameter and model learning have about the same ex

ante risk premium. This implies that more than half of the excess returns achieved in these

models occur due to ex post positive surprises in updates of beliefs. This is one of the

primary implications of learning for this sample. Interestingly, after the burn-in period,

this effect is also strong in the look-ahead prior. With parameter and model uncertainty,

agents beliefs quickly deviate from their full sample estimates, highlighting the difficulty

of learning in real-time, similar to the problem faced by an econometrician. In particular,

the sequence of shocks realized over the post-war sample generate a times series of beliefs

that have a systematic time series pattern: the initial low mean and high volatility of
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consumption growth causes an upward revision in the mean growth rates and a negative

revision in the volatility parameters, as described in Section 3. Fama and French (2002)

reach a similar conclusion in terms of the ex post versus the ex ante risk premium when

looking at the time-series of the aggregate price-earnings and price-dividend ratios. Sargent

and Cogley (2008) assume negatively biased beliefs in their model to highlight the same

mechanism. The results we present here are consistent with their conclusions, but our

models are estimated from fundamentals alone.

The equity return volatility is, in all the cases permitting parameter and model uncer-

tainty, close to the 17.1% annual return volatility in the data (from 15.4% to 15.7%). In

contrast, the equity return volatility in the models with fixed parameters is about 12%,

which is almost all cash flow volatility as the annual dividend growth volatility is 11.5%.

Thus, the sample variation in discount and growth rates arising from updates in agents’

beliefs cause excess return volatility (Shiller, 1980). This is reflected in the sample volatility

of the log price-dividend ratio, which is 0.38 in the data. In the cases with parameter and

model uncertainty the volatility of the log price-dividend ratio lies between 0.26 and 0.29.8

While this is only about three quarters of its volatility in the data, it is 4 to 5 times the

volatility of the log price-dividend ratio in the benchmark fixed parameters models (here

the volatility of the log price-dividend ratio is 0.06 for the 2-state model and 0.07 for the

3-state model).

The sample correlation between the log price-dividend ratios from the model versus the

data, is 0.53 and 0.52 for the models using both GDP and consumption to estimate beliefs

and 0.31 and 0.37 for the models using consumption only to estimate beliefs. The models

with fixed parameters have lower correlations, 0.24 for the 2-state model and 0.25 for the

3-state model. As an alternative measure of the fit between the time-series of the sample

price-level in the data versus those in the models considered here, the highest covariance

between the price-dividend ratio in the data and the models with parameter and model

uncertainty is 0.0573, whereas the highest covariance between the price-dividend ratio in

8The price-dividend ratio in each model is calculated as the corresponding in the data by summing the

last four quarters of payouts to get annual payout. The price-dividend ratio from the data includes share

repurchases in its definition of total dividends.
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the data and the models with fixed parameters is 0.0067 – a difference close to an order of

magnitude. Thus, with parameter and model learning the model tracks the aggregate stock

market price level (normalized by dividends) much more closely than either of the models

we consider with fixed parameters. The price-level, a first order moment, is arguably even

more important than matching the second order moments that usually are the focus in asset

pricing.

As a formal test of the learning model’s match of the aggregate stock price level (the

log D/P ratio) relative to the fixed parameter benchmark model, we run the following

regression:

dpdatat = α+ β1dp
ParModUnc
t + β2dp

FP3
t + εt, (10.7)

where dpdatat refers to the historical quarterly log dividend price ratio of the market portfolio,

dpParModUnc
t refers to the log dividend price ratio from the model with parameter and model

uncertainty, and dpFP3
t refers to the log dividend price ratio from the fixed parameters, 3-

state model. The first four columns of Table 10.4 shows that the regression coefficient

on the model with parameter and model uncertainty (β1) is significant at the 1% level

for both the historical and look-ahead priors, as well as whether learning is from realized

consumption growth only or also including realized GDP growth. The R2 ranges from 12%

to 26% and is the lowest for the look-ahead prior with learning from consumption only, and

the highest for the historical prior with learning from both consumption and GDP growth.

As before, the results are shown after a 10-year burn-in period, from 1957 to 2009. The

coefficient on the dividend yield from the fixed parameters model is insignificant in all of

these cases. The fifth column of Table 10.4 shows the regression with only the dividend

yield from the fixed parameters model. It is significant in this case, but the R2 is only 6%.

Finally, the last column of the table shows the regression with both the dividend yield from

the fixed parameter model and the dividend yield from the historical prior with learning

from both GDP and consumption growth, but where the dividend yield from the model

with parameter and model learning has been orthogonalized with respect to the dividend

yield from the fixed parameter model. The coefficient on the orthogonalized dividend yield

(β1) is still significant at the 1% level which implies that including the dividend yield from

the model with parameter and model learning leads to a statistically significant (at the 1%
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level) increase in the R2, relative to the fixed parameters benchmark case. The increase in

fit from the full learning models stems from a better match of the business cycle fluctuations

in the dividend yield, as well as low-frequency fluctuations. In particular, with parameter

learning the dividend yield displays a downward trend over the sample, similar to that found

in the data as documented by, for instance, Fama and French (2002).

In sum, including parameter and model uncertainty leads to not only better fit of the

unconditional asset pricing moments, but a significantly better fit of the realized aggregate

stock price level in the post-WW2 era.

Table 10.4: Dividend Yield Regression

Historical Prior Look-ahead Prior Fixed parameters Historical Prior

Cons. Cons. Cons. Cons. 3-state model Cons. + GDP

V ariables only + GDP Only + GDP only (orthogonal)

constant 0.82 0.19 1.25 0.16 1.86 1.86

(1.82) (1.72) (1.91) (1.71) (2.06) (1.86)

pdParModUnc 0.47∗∗∗ 0.79∗∗∗ 0.37∗∗∗ 0.61∗∗∗ 0.79∗∗∗

(0.13) (0.14) (0.12) (0.11) (0.14)

pdFP3 0.73 0.28 0.92∗ 0.40 1.45∗∗∗ 1.45∗∗∗

(0.46) (0.43) (0.49) (0.43) (0.56) (0.51)

R2 15.0% 25.8% 11.7% 20.0% 6.2% 25.8%

Permanent shocks and the volatility of long-run yields. With parameter and

model uncertainty, the updates in mean beliefs constitute permanent shocks to expectations

about consumption growth rates, consumption growth volatility, and higher order moments.

This is a distinguishing feature of models with learning about constant quantities relative

to learning about or observing a stationary underlying process (such as our state of the

Markov chain, long-run risk in Bansal and Yaron (2004), or the surplus consumption ratio

in Campbell and Cochrane (1999)). The latter models have transitory variables only in

marginal utility growth. Shocks to a transitory state variable eventually die out, and so

(very) long-run expectations are constant. Shocks to, for instance, the mean belief about
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the unconditional growth rate of consumption are, on the other hand, permanent, leading

to permanent shocks to marginal utility growth. This has implications for all asset prices,

but can be most clearly seen when considering the volatility of long-run default-free real

yields, which can be readily calculated from our model. Table 10.5 shows the volatility

of annualized yields for default-free real, zero-coupon bonds at different maturities. The

data column gives the volatility of yields on U.S. TIPS, calculated from monthly data for

the longest available sample, 2003 to 2011, from the Federal Reserve Board, along with

the standard error of the volatility estimates. In the remaining columns, the corresponding

model-implied yield volatilities, calculated from each of the models considered in this paper

over the post-WW2 sample, are given.

First, the yield volatilities for the models with parameter and model uncertainty are

substantially higher than the yield volatilities from the models with fixed parameters. The

2-year yields are twice as volatile, while the 10-year yields are an order of magnitude more

volatile. This is a direct consequence of the permanent shocks to expectations resulting

from parameter learning, whereas the models with fixed parameters have constant long-run

consumption growth mean and volatility. Notably, the long maturity yields in the data have

about the same yield volatility as in the models with parameter uncertainty, and so this

is another dimension along which learning about parameters and models can help explain

historical asset pricing behavior.

Table 10.5: Real Risk-free Yield Volatilities

TIPS Data Consumption Consumption,GDP Fixed Parameters

(2003 – 2011) (s.e.) Historical Lookahead Historical Lookahead 2-state 3-state

5-yr yield 0.75% 0.35% 0.30% 0.44% 0.39% 0.17% 0.19%

(0.18%)

10-yr yield 0.45% 0.31% 0.27% 0.42% 0.36% 0.09% 0.10%

(0.11%)

20-yr yield 0.30% 0.30% 0.26% 0.42% 0.35% 0.05% 0.06%

(0.06%)

30-yr yield n/a 0.30% 0.25% 0.42% 0.35% 0.03% 0.03%
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Return Predictability Lastly, we consider excess market return forecasting regression

using the dividend yield as the predictive variable. These regressions have a long history

in asset pricing and remain a feature of the data that asset pricing models typically aim

to explain (e.g., Campbell and Cochrane (1999), Bansal and Yaron (2004)). However,

the strength of the empirical evidence is under debate (see, e.g., Stambaugh (1999), Ang

and Bekaert (2007), Boudoukh, Richardson and Whitelaw (2008), and Goyal and Welch

(2008) for critical analyses). Here we run standard forecasting regressions overlapping at

the quarterly frequency using the sample of market returns and dividend yields as implied

by each of the models. Note that, as before, we are not looking at population moments or

average small-sample moments, but the single sample generated by feeding the models the

actual sample of realized consumption growth.

Table 10.6 shows the forecasting regressions over different return forecasting horizons

from the data. We use both the market dividend yield and the approximation to the

consumption-wealth ratio, cay, of Lettau and Ludvigson (2001) to show the amount of pre-

dictability implied by these regressions in the data. We then run the same regressions using

model implied returns and dividend yields. The benchmark models with fixed parameters

(bottom right in the table) show no evidence of return predictability at the 5% significance

level and the R2’s are very small. These models do, in fact, feature time-variation in the

equity risk premium, but the standard deviation of the risk premiums are only about 0.5%

per year and so the signal-to-noise ratio in these regressions is too small to result in signifi-

cant predictability in a sample of the length we consider here. The models with parameter

uncertainty, however, display significant in-sample return predictability and the regression

coefficients and the R2’s are large and increasing in the forecasting horizon similar to those

in the data. The ex ante predictability in these models is in fact similar to that in the

fixed parameters cases, but since the parameters are updated at each point in time, there

is significant ex post predictability. For instance, an increase in the mean parameters of

consumption growth leads to high returns and lower dividend yield. Thus, a high dividend

yield in sample forecasts high excess returns in sample. This is the same effect of learning

as that pointed out in Timmermann (1993) and Lewellen and Shanken (2002). The models

here show that the significant regression coefficients in the classical forecasting regressions
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show up in the sample only in the model where there is parameter learning which generates

a significant difference between ex ante expected returns and ex post realizations. Thus, the

model predicts that the amount of predictability is much smaller out-of-sample, consistent

with the empirical evidence in Goyal and Welch (2008) and Ang and Bekaert (2007).



CHAPTER 10. DOES LEARNING MATTER FOR ASSET PRICES? 104

Table 10.6: Return Forecasting Regressions

rt,t+q − rf,t,t+q = αq + βq,dp ln (Dt/Pt) + εt,t+q

Data Historical prior

ln (Dt/Pt) := cayt ln (Dt/Pt) := ln
Σ3
j=0D

Mkt.
t−j

PMkt.t
Cons. only Cons. and GDP

q βdp (s.e.) R2
adj βdp (s.e.) R2

adj βdp (s.e.) R2
adj βdp (s.e.) R2

adj

1 1.19∗∗∗ 4.67% 0.03∗ 1.6% 0.04 1.4% 0.03 1.3%

(0.31) (0.02) (0.03) (0.02)

4 4.29∗∗∗ 15.65% 0.11∗∗ 6.6% 0.18∗∗ 8.3% 0.14∗∗ 6.8%

(1.18) (0.05) (0.07) (0.06)

8 7.60∗∗∗ 28.1% 0.17∗ 8.5% 0.38∗∗∗ 19.2% 0.28∗∗∗ 13.7%

(1.72) (0.10) (0.09) (0.08)

16 12.31∗∗∗ 41.6% 0.22∗∗ 9.5% 0.61∗∗∗ 28.4% 0.44∗∗∗ 17.9%

(1.82) (0.11) (0.15) (0.13)

Look-ahead prior Fixed parameters

Cons. only Cons. and GDP 2-state model 3-state model

q βdp (s.e.) R2
adj βdp (s.e.) R2

adj βdp (s.e.) R2
adj βdp (s.e.) R2

adj

1 0.03 1.3% 0.03 0.9% −0.01 0.0% 0.004 0.0%

(0.02) (0.03) (0.062) (0.062)

4 0.18∗∗ 7.7% 0.15∗∗ 5.4% 0.19 1.0% 0.20 1.2%

(0.07) (0.07) (0.17) (0.16)

8 0.38∗∗∗ 18.3% 0.29∗∗ 10.8% 0.37∗ 2.3% 0.41∗ 2.7%

(0.12) (0.09) (0.24) (0.23)

16 0.64∗∗∗ 28.9% 0.42∗∗ 13.0% 0.26 0.7% 0.28 0.8%

(0.17) (0.17) (0.31) (0.30)
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Chapter 11

Conclusion

This paper studies the statistical problem and asset pricing implications of learning about

parameters, states, and models in a standard class of models for consumption dynamics.

Our approach is empirical, focuses on the specific implications generated by learning about

U.S. consumption dynamics during the post World War II period, and contributes to a

growing empirical literature documenting the importance of learning for asset prices (e.g.,

Malmendier and Nagel (2011), and Pastor and Veronesi (2003)).

We find broad support for the importance of learning about parameters and models.

Agents’ beliefs about consumption growth dynamics are strongly time-varying, nonstation-

ary, and help explain the realized time-series of equity returns and price-dividend ratio.

In particular, the new and significant relationship we document between contemporaneous

realized returns and revisions in beliefs is strong support for the importance of learning. In-

corporating learning and our estimated time-series of beliefs in a general equilibrium model

uniformly improves the model fit with respect to the standard asset pricing moments.

Taken together, this evidence questions the typical implementations of rational expec-

tations consumption-based exchange economy models, in which agents know with certainty

the data generating process for aggregate consumption growth. Further, the nonstation-

ary dynamics induced by learning about fixed quantities such as parameters and models

translates to nonstationary dynamics in marginal utility growth and asset valuation ratios.

This, in turn, implies that standard econometric approaches to model tests and parameter

estimation should be used with caution (see also Cogley and Sargent (2008)).
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The procedure implemented in this paper can in a straightforward way be implemented

for other countries or markets, or extended to multi-country or multi-asset settings. For

instance, learning about the joint dynamics of dividends and consumption is an interesting

exercise abstracted away from in this paper. In terms of other countries, it is clear that

the post World War II experience of Japan would lead to a very different path of beliefs.

Learning about the joint dynamics of, say, the U.S. and Japan’s economies would have

interesting implications, not only for their respective equity markets, but also for the real

exchange rate dynamics. It will in future research be interesting to consider priced param-

eter uncertainty with Epstein-Zin preferences. Parameter and model uncertainty will be

major sources of anxiety for agents with preferences for early resolution of uncertainty as

these risks are nonstationary and thus truly ”long-run.” As in Bansal and Yaron (2004),

these sources of uncertainty will likely command high risk prices.
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Chapter 12

Appendix

12.1 Existing literature and alternative approaches for pa-

rameter, state, and model uncertainty.

Our paper is related to a large literature studying the asset pricing implications of param-

eter or state learning. Most of this literature focuses on learning about a single unknown

parameter or state variable (assuming the other parameters and/or states are known) that

determines dividend dynamics and power utility. For example, Timmerman (1993) con-

siders the effect of uncertainty on the average level of dividend growth, assuming other

parameters are known, and shows in simple discounted cash-flow setting that parameter

learning generates excess volatility and patterns consistent with the predictability evidence

(see also Timmerman 1996). Lewellen and Shanken (2002) study the impact of learning

about mean cash-flow parameters with exponential utility with a particular focus on return

predictability.

Veronesi (2000) considers the case of learning about mean-dividend growth rates in a

model with underlying dividend dynamics with power utility and focuses on the role of signal

precision or information quality. Pastor and Veronesi (2003, 2006) study uncertainty about

a fixed dividend-growth rate or profitability levels with an exogenously specified pricing

kernel, in part motivated in order to derive cross-sectional implications. Weitzman (2007)

and Bakshi and Skoulakis (2009) consider uncertainty over volatility.
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Cogley and Sargent (2008) consider a 2-state Markov-switching model, parameter un-

certainty over one of the transition probabilities, tilt beliefs to generate robustness via

pessimistic beliefs, and use power utility. After calibrating the priors to the 1930s experi-

ence, they simulate data from a true model calibrated to the post War experience to show

how priced parameter uncertainty and concerns for robustness impact asset prices, in terms

of the finite sample distribution over various moments.

A number of papers consider state uncertainty, where the state evolves discretely via a

Markov switching model or smoothing via a Gaussian process. Moore and Shaller (1996)

consider consumption/dividend based Markov switching models with state learning and

power utility. Brennen and Xia (2001) consider the problem of learning about dividend

growth which is not a fixed parameter but a mean-reverting stochastic process, with power

utility. Veronesi (2004) studies the implications of learning about a peso state in a Markov

switching model with power utility. David and Veronesi (2010) consider a Markov switching

model with learning about states.

In the case of Epstein-Zin utility, Brandt, Zeng, and Zhang (2004) consider alternative

rules for learning about an unknown Markov state, assuming all parameters and the model

is known. Lettau, Ludvigson, and Wachter (2008) consider information structures where

the economic agents observe the parameters but learn about states in Markov switching

consumption based asset pricing model. Chen and Pakos (2008) consider learning about

the mean of consumption growth which is a Markov switching process. Ai (2010) studies

learning in a production-based long-run risks model with Kalman learning about a persistent

latent state variable. Bansal and Shaliastovich (2008) and Shaliastovich (2010) consider

learning about the persistent component in a Bansal and Yaron (2004) style model with

sub-optimal Kalman learning.

Additionally, some papers consider combinations of parameter or model uncertainty and

robustness, see, e.g., Hansen and Sargent (2000,2009) and Hansen (2008).
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12.2 Econometrics

This section briefly reviews the mechanics of sequential Bayesian learning and introduces

the econometric methods needed to solve the high-dimensional learning problem. For ease

of exposition, we abstract here from the problem of model uncertainty and drop the depen-

dence on the model specification. Model uncertainty can be dealt with easily in a fashion

analogous to the problem considered here.

The agent begins with initial beliefs over the parameters and states, p (θ, st) = p (st|θ) p (θ),

and then updates via Bayes’ rule. If at time t the agent holds beliefs p
(
θ, st|yt

)
, then updat-

ing occurs in a two step process by first computing the predictive distribution, p
(
θ, st+1|yt

)
,

and then updating via the likelihood function, p (yt+1|st+1, θ):

p
(
θ, st+1|yt+1

)
∝ p (yt+1|θ, st+1) p

(
θ, st+1|yt

)
.

The predictive distribution is

p
(
θ, st+1|yt

)
=

∫
p (st+1|st, θ) p

(
θ, st|yt

)
dst,

which shows the recursive nature of Bayesian updating, as p
(
θ, st+1|yt+1

)
is functionally

dependent on p
(
θ, st|yt

)
.

The main difficulty is characterizing p
(
θ, st|yt

)
for each t, which is needed for sequential

learning. Unfortunately, even though st is discretely valued, there is no analytical form

for p
(
θ, st|yt

)
, as it is high-dimensional and the dependence on the data is complicated

and nonlinear. We use Monte Carlo methods called particle filters to generate approximate

samples from p
(
θ, st|yt

)
. Johannes and Polson (2008) developed the general approach we

use, and it was extended and applied to Markov switching models by Carvalho, Johannes,

Lopes, and Polson (2010a, 2010b) and Carvalho, Lopes and Polson (2009). Details of the

algorithms are given in those papers.

The first step of the approach, data augmentation, introduces a conditional sufficient

statistics, Tt, for the parameters. Sufficient statistics imply that the full posterior distri-

bution of the parameters conditional on entire history of latent states and data takes a

known functional form conditional on a vector of sufficient statistics: p
(
θ|st, yt

)
= p (θ|Tt),

where p (θ|Tt) is a known distribution. The conditional sufficient statistics are given by



CHAPTER 12. APPENDIX 117

Tt+1 = T (Tt, st+1, yt+1), where the function T (·) is analytically known, which implies the

sufficient statistics can be recursively updated. For Markov switching models, the sufficient

statistics contain random variables such as the number of times and duration of each state

visit, the mean and variance of yt in those visits, etc. This step requires conjugate priors.

The key is that it is easier to sample from p
(
θ, Tt, st|yt

)
than p

(
θ, st|yt

)
, where

p
(
θ, Tt, st|yt

)
= p (θ|Tt) p

(
Tt, st|yt

)
. (12.1)

By the definition of sufficient statistics and the use of conjugate priors, p (θ|Tt) is a known

distribution (e.g., normal). This transforms the problem of sequential learning of param-

eters and states into one of sequential learning of states and sufficient statistics, and then

standard updating by drawing from p (θ|Tt). The dimensionality of the target distribution,

p
(
θ, Tt, st|yt

)
, is fixed as the sample size increases.

An N− particle approximation, pN (θ, Tt, st|yt), approximates p
(
θ, Tt, st|yt

)
via ‘parti-

cles’
{

(θ, Tt, st)
(i)
}N
i=1

so that:

pN (θ, Tt, st|yt) =
1

N

N∑
i=1

δ
(θ,Tt,st)

(i) ,

where δ is a Dirac mass. A particle filtering algorithm merely consists of a recursive al-

gorithm for generating new particles, (θ, Tt+1, st+1)(i), given existing particles and a new

observation, yt+1. The approach developed in Johannes and Polson (2008) and Carvalho,

Johannes, Lopes, and Polson (2009a, 2009b) generates a direct or exact sample from

pN (θ, Tt, st|yt), without resorting to importance sampling or other approximate methods.

The algorithm is straightforward to code and runs extremely quickly so that it is possible

to run for large values N , which is required to keep the Monte Carlo error low. These draws

can be used to estimate parameters and states variables.

In addition to sequential parameter estimation, particle filters can also be used for

Bayesian model comparison. Bayesian model comparison and hypothesis testing utilizes

the Bayes factor, essentially a likelihood ratio between competing specifications. Formally,

given a number of competing model specifications, generically labeled as model Mk and
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Mj , the Bayesian approach computes the probability of model k as:

p
(
Mk|yt

)
=

p(yt|Mk)p (Mk)∑N
j=1 p(y

t|Mj)p (Mj)
,

where p (Mk) is the prior probability of model k,

p(yt+1|Mk) = p(yt+1|yt,Mk)p
(
yt−1|Mk

)
,

and

p(yt+1|yt,Mi) =

∫
p (yt+1|θ, st,Mi) p

(
θ, st|yt,Mi

)
d (θ, st)

is the marginal likelihood of observation yt+1, given data up to time t in model k. Marginal

likelihoods are not known analytically and are difficult to compute even using MCMC

methods. Since our algorithm provides approximate samples from p
(
st, θ|yt

)
, it is straight-

forward to estimate marginal likelihoods via

pN (yt+1|yt,Mk) =
1

N

N∑
i=1

p
(
yt+1| (θ, st)(i) ,Mk

)
.

For all of our empirical results, we ran particle filtering algorithms with N = 10K

particles. We performed extensive simulations to insure that this number of particles insured

a low and negligible Monte Carlo error.

12.3 Priors

Table 12.1 shows the prior parameters for the three different models we consider. The his-

torical and look-ahead priors are different along some important dimensions. In particular,

pre-WW2 consumption data is a lot more volatile than the post-war data (annual standard

deviation of 4.8% in the pre-WW2 data versus 1.36% in post-WW2 data). This has been,

in part, attributed to inferior pre-war data that is more noisy and sample that contains a

more cyclical component of the economy (Romer, 1989). What is true, nevertheless, is that

recessions were more frequent and lasted longer in the pre-WW2 data, and that the Great

Depression was a worse recession than ever experienced afterwards, current crisis included.

This is reflected in the disaster state in the 3-state models, in particular for the historical

prior, akin to the disaster risk considered in Barro (2008).
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For the historical prior, we have estimated, respectively, the 2- and 3-state models

starting with very flat priors on the annual Shiller data. The posterior obtained at the

end of the pre-war sample is transformed into a prior for the quarterly post-WW2 sample

by dividing the average expected means and standard deviations within each regime by 4,

and the average transition probability matrix, Π, is taken to the power of 1/4. This is of

necessity somewhat ad hoc - first, a 2-state model on annual data does not imply a 2-state

model on quarterly data; second, one would usually divide standard deviations by 2 to go

from annual to quarterly. However, a large fraction of the pre-WW2 excess volatility is

likely due to noisy data, which is not what we intend to capture with our prior. What

is more, applying priors where the mean belief of the standard deviation of consumption

growth within each regime is counter-factually high, leads to a state identification issue: the

difference in the average beliefs of the mean within each state is too small relative to the

volatilities and so the procedure cannot identify the separate states.

The look-ahead priors have mean values equal to the posterior from the corresponding

historical priors in 2009:Q1. These are very close to what would be the maximum likelihood

estimates obtained from estimating the 2- and 3-state models using the post-WW2 quar-

terly sample. The look-ahead priors have lower consumption growth volatility and higher

persistence of the good state relative to the historical priors. Thus, the look-ahead prior

reflects an expectation in 1947:Q1 of the world having higher growth and lower volatility

than in the period before WW2. In terms of the tightness of the priors, the expansion state

(always state 1), which has occurred the most, has the tightest priors, the recession state

(state 2) has flatter priors as this state is visited less often, while the disaster state (state

3), for the 3-state models, has the flattest priors. This state is the one agents has the least

information about, as it is a rare event.

For the extended model with both consumption and GDP growth, the priors are set to

match the consumption-only model as much as possible to minimize the priors’ effect on

the comparison of the models. Since the means of the hidden state variable are equal to

the means of the consumption growth in each state, the priors of these means are the same

as in the consumption-only model. We also match the prior means of the total variance

of consumption growth with similar flatness. However, since the specification allows for
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idiosyncratic noise in consumption growth (σcε
c
t), we set both the mean of the variance of

the hidden state variable in each state and the mean of the variance of the noise component

to half of the prior mean of the total variance of consumption growth, with similar flatness.

This way, the total prior mean variance of consumption growth, is the same as in the

consumption only case. The priors for the transition probabilities are the same as in the

consumption only case. For α and β in the GDP growth equation, the prior mean is -0.2

for α and 1.2 for β, and prior standard deviation is 0.45 for both. Finally, the prior mean of

the idiosyncratic component of the variance of GDP growth is set by matching the variance

of the GDP growth in the post-war data.

12.4 Time-Averaging of Consumption Data and Model Prob-

abilities

The aggregate consumption data is time-averaged, which has implications for the volatility

and autocorrelation structure of measured consumption growth. In particular, Working

(1960) shows that time-averaging of i.i.d. data leads to lower variance (the variance is de-

creased by a factor of 1.5) and an autocorrelation of 0.25. Time-averaging can therefore

artificially lead us to conclude that consumption growth follows a non-i.i.d. process (e.g.,

as we would get in the 2-state model with persistent states). Further, Hall (1978) argues

theoretically and empirically that consumption growth is close to i.i.d. To ensure the rejec-

tion of the i.i.d. model we document in the paper is not an artifact of the time-averaging,

we here assume the null hypothesis that consumption growth is in fact i.i.d., and remove

the autocorrelation induced by time-averaging by creating the following residuals:

νc,t = ∆ct − 0.25 ∗∆ct−1. (12.2)

We then redo the filtration exercise (parameters and models) and assign a prior probability

of the i.i.d. model of 0.95. Figure 12.1 shows that also in this case, even with the strong

model prior imposed, the i.i.d. model is rejected by the Bayesian agent about half-way

through the sample.
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Figure 12.1: Model Probabilities and Time-Averaging of Consumption Data
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12.5 Model solution and pricing

Here we give the details for how the prices of the consumption and aggregate equity claim

in Section 4 are computed. At each point in time t, we price the equity claim given a set of

model parameters, which are set equal to the mean beliefs at the time. The i.i.d. 2-state

model, and the general 2- and 3-state models have parameters:

θ(1) = {µ1, µ2, σ1, σ2, π11}

θ(2) = {µ1, µ2, σ1, σ2, π11, π22} ,

θ(3) = {µ1, µ2, µ3, σ1, σ2, σ3, π11, π12, π22, π23, π13, π33} ,

respectively. In addition, there is the probability that the i.i.d 2-state model is the correct

model, the probability that the general 2-state model is the correct model versus the residual

probability of the 3-state model being the correct model. We also set these probabilities

as constants when the agent prices the equity claim. Denote these probabilities p1, p2, and

p3 = 1 − p1 − p2. Thus, there is a total of 25 parameters that all are estimated using the

particle filter and realized consumption (and GDP) data in real time. These mean parameter

estimates will change at each time t, but we do not give the parameters time-subscripts to

highlight that they are assumed to be constant following the anticipated utility framework

in the pricing problem at each time t. In addition, there are the preference parameters γ, ψ,

β, which are set to the values used in Bansal and Yaron (2004), and the leverage factor λ and

the idiosyncratic dividend growth volatility σd. These parameters remain constant over the

sample. When solving for the price-dividend ratio, we can and do ignore the idiosyncratic

component of dividend growth.

First, we have to solve for the wealth-consumption ratio, PC. At each time t, the

wealth-consumption ratio is solved using the recursion:

PC
(
s

(2)
t , s̃

(3)
t

)
= βE

[
e(1−γ)∆ct+1

(
1 + PC

(
s

(2)
t+1, s̃

(3)
t+1

))θ
|It
]1/θ

, (12.3)

where the wealth-consumption ratio at time t is a function of the state-variables s
(2)
t and

s̃
(3)
t , and where It is the agent’s information set which includes the mean parameter values

used as constant parameters, as well as the mean state beliefs. The state-variable s
(2)
t is

the belief that the economy is in state 1 in the 2-state model. Remember that the states
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are still hidden, even though all the parameters are set to constants, so this belief will have

a support of (0, 1). Similarly, s̃
(3)
t is the 2 × 1 vector of state belief probabilities from the

3-state model – the probability of being in state 1 and the probability of being in state 2.

In the model solution, the agent updates beliefs about s(2) and s̃(3) only by observing

realized consumption growth – he does not know which model is the true model, or which

state is the current state, so this uncertainty must be integrated out in the model solution.

Below is a conceptual algorithm for the model solution.1

1. Given a set of parameters, start with an initial guess of the function PC
(
s(2), s̃(3)

)
on a grid for the 3 state variables, which all have support (0, 1).

2. For each value of s(2), s̃(3) on the grid, do points 3. – 8. below:

3. Draw a model (the i.i.d. 2-state mode, or the general 2-state or 3-state model) ac-

cording to the model probabilities p1, p2, and p3.

4. Draw the current state of this model (state 1, state 2 (or state 3)), using the state

belief for the current values in the grid for s
(2)
t or s̃

(3)
t . Note: this step is irrelevant for

the i.i.d. 2-state model.

5. Given the model and the state, draw a random standard normal shock εt+1, and

compute consumption growth as

∆ct+1 = µM,j + σM,jεt+1, (12.4)

where the subscript M refers to the model and the subscript j refers to the state in the

same model. The parameters are assumed known and constant as discussed above.

6. Given observed log consumption growth (∆ct+1) (the agent does not observe the shock

ε), update the agent’s belief using Bayes’ rule. When finding s
(2)
t+1, condition on the

2-state model being the correct model, and when finding s̃
(3)
t+1, condition on the 3-state

1In actually solving the model, we employ numerical integration and not Monte Carlo simulation to find

the wealth-consumption ratio. We compute the price-dividend ratio by summing over zero-coupon dividend

claims. While we implement the model solution in this way for faster and more accurate model solution,

this additional level of detail is not necessary for conceptually understanding how prices are computed.
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model being the correct model. See, e.g., Hamilton (1994) for how to update beliefs

in switching regime models such as the ones considered here. Note that one has to

update the belief for both models (s(2) and s̃(3)), even though in the simulation of

consumption growth we conditioned on one of the models, as the agent does not know

the model.

7. Given s
(2)
t+1 and s̃

(3)
t+1 and the initial guess for PC, we have all we need to evaluate the

expression inside the expectation of Equation (12.3).

8. Repeat 3.−7. many times and take the average of the different values calculated for the

expression inside the expectation of Equation (12.3). Use this average as an estimate

of the expectation in Equation (12.3). Store the resulting value for PC
(
s(2), s̃(3)

)
found for the current place in the grid for s(2) and s̃(3).

9. Once 3. – 8. has been implemented for all values of s(2) and s̃(3) on the grid, update

the function PC
(
s(2), s̃(3)

)
.

10. Iterate on 2. – 9. until a suitable convergence criterion for the PC function has been

achieved.

Points 1. – 10. gives the wealth consumption ratio at time t. The pricing functional

PC
(
s

(2)
t , s̃

(3)
t

)
must be computed in this way for each t, as the parameters will change at

each time t. This is the anticipated utility component of the pricing. Denote the price-

consumption ratio as a function of time t parameters as PCt

(
s

(2)
t , s̃

(3)
t

)
.

The price-dividend ratio can be found similarly, by iterating on the below expression in

the same manner as above for each time t in the sample with its corresponding time t set

of parameter values:

PDt

(
s

(2)
t , s̃

(3)
t

)
= E

βθe(λ−γ)∆ct+1(
PCt

(
s

(2)
t+1, s̃

(3)
t+1

)
+ 1

PCt

(
s

(2)
t , s̃

(3)
t

) )θ−1
(

1 + PDt

(
s

(2)
t+1, s̃

(3)
t+1

))
|It

 .
(12.5)

Finally, the returns to the equity claim are calculated as follows. For the return from

time t to time t+ 1:
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1. Set s
(2)
t and s̃

(3)
t equal to the mean state beliefs at time t (after parameter uncertainty

is integrated out).

2. This gives the price dividend ratio at time t as Pt
Dt

= PDt

(
s

(2)
t , s̃

(3)
t

)
.

3. Set s
(2)
t+1 and s̃

(3)
t+1 equal to the mean state beliefs at time t + 1 (after parameter

uncertainty is integrated out).

4. This gives the price dividend ratio at time t+ 1 as Pt+1

Dt+1
= PDt+1

(
s

(2)
t+1, s̃

(3)
t+1

)
.

5. Next, using realized (in the data) consumption growth, obtain dividend growth as:

Dt+1

Dt
=

(
Ct+1

Ct

)λ
e−

1
2
σd+σdεt+1 , (12.6)

where εt+1 is a draw from a standard normal distribution independent of everything

else. These simulated shocks are constrained to have mean zero and variance one

over the sample, such that ET

[
e−

1
2
σ2
d.t+1+σdεt+1

]
= 1 (in practice, extremely close

to 1). This is done to ensure that the level of the in-sample average equity return

and equity return volatility are not affected by the (by chance) high or low draw

of the idiosyncratic component of dividends, or (by chance) high or low volatility of

idiosyncratic dividend growth.

6. Given this, the return is calculated as:

Rt,t+1 =
Dt+1

Dt

(
Pt
Dt

)−1(
1 +

Pt+1

Dt+1

)
. (12.7)
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Table 12.1: Priors Specification

Historical priors

Priors for i.i.d. model Priors for 2-state model Priors for 3-state model

Par. Mean St.Dev Par. Mean St.Dev Par. Mean St.Dev

µ 0.9% 0.5% µ1 1.0% 0.25% µ1 1.0% 0.25%

µJ −2.0% 0.5% µ2 −0.5% 0.5% µ2 −0.4% 0.5%

µ3 −2.0% 1.5%

σ2 (0.7%)2 (0.7%)2 σ2
1 (0.5%)2 (0.5%)2 σ2

1 (0.5%)2 (0.5%)2

σ2
J (1.0%)2 (1.0%)2 σ2

2 (1.0%)2 (1.0%)2 σ2
2 (1.0%)2 (1.0%)2

σ2
3 (1.5%)2 (1.5%)2

λ 0.05 0.05 π11 0.95 0.034 π11 0.95 0.034

π̂12 0.80 0.16

π̂21 0.80 0.16

π22 0.80 0.16 π22 0.75 0.19

π̂31 0.33 0.24

π33 0.40 0.20

Look-ahead priors

Priors for i.i.d. model Priors for 2-state model Priors for 3-state model

Par. Mean St.Dev Par. Mean St.Dev Par. Mean St.Dev

µ 0.63% 0.22% µ1 0.68% 0.18% µ1 0.68% 0.18%

µJ −1.2% 0.25% µ2 0.2% 0.5% µ2 0.3% 0.5%

µ3 −1.14% 0.5%

σ2 (0.45%)2 (0.45%)2 σ2
1 (0.36%)2 (0.36%)2 σ2

1 (0.35%)2 (0.35%)2

σ2
J (0.55%)2 (0.55%)2 σ2

2 (0.7%)2 (0.7%)2 σ2
2 (0.7%)2 (0.7%)2

σ2
3 (0.7%)2 (0.7%)2

λ 0.05 0.05 π11 0.95 0.034 π11 0.95 0.034

π̂12 0.83 0.14

π̂21 0.67 0.24

π22 0.80 0.16 π22 0.75 0.19

π̂31 0.50 0.29

π33 0.33 0.24
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