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LIFETIME PORTFOLIO SELECTION 
BY DYNAMIC STOCHASTIC PROGRAMMING 

Paul A. Samuelson * 

Introduction 

M OST analyses of portfolio selection, 
whether they are of the Markowitz- 

Tobin mean-variance or of more general type, 
maximize over one period.' I shall here formu- 
late and solve a many-period generalization, 
corresponding to lifetime planning of consump- 
tion and investment decisions. For simplicity 
of exposition I shall confine my explicit dis- 
cussion to special and easy cases that suffice to 
illustrate the general principles involved. 

As an example of topics that can be investi- 
gated within the framework of the present 
model, consider the question of a "business- 
man risk" kind of investment. In the literature 
of finance, one often reads; "Security A should 
be avoided by widows as too risky, but is highly 
suitable as a businessman's risk." What is in- 
volved in this distinction? Many things. 

First, the "businessman" is more affluent 
than the widow; and being further removed 
from the threat of falling below some sub-- 
sistence level, he has a high propensity to 
embrace variance for the sake of better yield. 

Second, he can look forward to a high salary 
in the future; and with so high a present dis- 
counted value of wealth, it is only prudent for 
him to put more into common stocks compared 
to his present tangible wealth, borrowing if 
necessary for the purpose, or accomplishing 
the same thing by selecting volatile stocks that 
widows shun. 

Third, being still in the prime of life, the 
businessman can "recoup" any present losses 
in the future. The widow or retired man near- 
ing life's end has no such "second or nth 
chance." 

Fourth (and apparently related to the last 
point), since the businessman will be investing 
for so many periods, "the law of averages will 
even out for him," and he can afford to act 
almost as if he were not subject to diminishing 
marginal utility. 

What are we to make of these arguments? 
It will be realized that the first could be purely 
a one-period argument. Arrow, Pratt, and 
others2 have shown that any investor who 
faces a range of wealth in which the elasticity 
of his marginal utility schedule is great will 
have high risk tolerance; and most writers 
seem to believe that the elasticity is at its 
highest for rich - but not ultra-rich! - 
people. Since the present model has no new 
insight to offer in connection with statical risk 
tolerance, I shall ignore the first point here 
and confine almost all my attention to utility 
functions with the same relative risk aversion 
at all levels of wealth. Is it then still true that 
lifetime considerations justify the concept of 
a businessman's risk in his prime of life? 

Point two above does justify leveraged in- 
vestment financed by borrowing against future 
earnings. But it does not really involve any 
increase in relative risk-taking once we have 
related what is at risk to the proper larger base. 
(Admittedly, if market imperfections make 
loans difficult or costly, recourse to volatile, 
"leveraged" securities may be a rational pro- 
cedure.) 

The fourth point can easily involve the in- 
numerable fallacies connected with the "law of 
large numbers." I have commented elsewhere 3 

on the mistaken notion that multiplying the 
same kind of risk leads to cancellation rather 

* Aid from the National Science Foundation is gratefully 
acknowledged. Robert C. Merton has provided me with 
much stimulus; and in a companion paper in this issue of 
the REVIEW he is tackling the much harder problem of 
optimal control in the presence of continuous-time sto- 
chastic variation. I owe thanks also to Stanley Fischer. 

'See for example Harry Markowitz [5]; James Tobin 
[14], Paul A. Samuelson [10]; Paul A. Samuelson and 
Robert C. Merton [13]. See, however, James Tobin [15], 
for a pioneering treatment of the multi-period portfolio 
problem; and Jan Mossin [7] which overlaps with the 
present analysis in showing how to solve the basic dynamic 
stochastic program recursively by working backward from 
the end in the Bellman fashion, and which proves the 
theorem that portfolio proportions will be invariant only 
if the marginal utility function is iso-elastic. 

2 See K. Arrow [1]; J. Pratt [9]; P. A. Samuelson and 
R. C. Merton [13]. 

3P. A. Samuelson [11]. 
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than augmentation of risk. I.e., insuring 
many ships adds to risk (but only as \In); 
hence, only by insuring more ships and by 
also subdividing those risks among more people 
is risk on each brought down (in ratio 1/V/n). 

However, before writing this paper, I had 
thought that points three and four could be 
reformulated so as to give a valid demonstra- 
tion of businessman's risk, my thought being 
that investing for each period is akin to agree- 
ing to take a 1/nth interest in insuring n inde- 
pendent ships. 

The present lifetime model reveals that in- 
vesting for many periods does not itself in- 
troduce extra tolerance for riskiness at early, 
or any, stages of life. 

Basic Assumptions 

The familiar Ramsey model may be used as 
a point of departure. Let an individual maxi- 
mize 

T 

e-Pt U[C(t)]dt (1) 

subject to initial wealth WO that can always be 
invested for an exogeneously-given certain 
rate of yield r; or subject to the constraint 

C(t) = rW(t) - W(t) (2) 

If there is no bequest at death, terminal wealth 
is zero. 

This leads to the standard calculus-of-varia- 
tions problem 

T 

J = Max e-Pt U[rW - W]dt (3) 
{W(t)} ? 

This can be easily related I to a discrete- 
time formulation 

T 

Max 1t0 (1+p)-t U[Ct] (4) 

subject to 

C= W Wt+1 (5) 
1+r 

or, 

MaxEt= (1+p)t U [Wt- W+ ] (6) 
{w~~~O+ 1+r 

for prescribed (W0, WT+1). Differentiating 
partially with respect to each Wt in turn, we 
derive recursion conditions for a regular inte- 
rior maximum 

(I +P) U wt1 +] 
1+r1r 

=U' Wt - [w + (7) 

If U is concave, solving these second-order 
difference equations with boundary conditions 
(Won WT+1) will suffice to give us an optimal 
lifetime consumption-investment program. 

Since there has thus far been one asset, and 
that a safe one, the time has come to introduce 
a stochastically-risky alternative asset and to 
face up to a portfolio problem. Let us postulate 
the existence, alongside of the safe asset that 
makes $1 invested in it at time t return to you 
at the end of the period $1(1 + r), a risk asset 
that makes $1 invested in, at time t, return to 
you after one period $1Zt, where Zt is a random 
variable subject to the probability distribution 

Prob {Zt < z} = P(z). z- (8) 

Hence, Zt+1 - 1 is the percentage "yield" of 
each outcome. The most general probability 
distribution is admissible: i.e., a probability 
density over continuous z's, or finite positive 
probabilities at discrete values of z. Also I 
shall usually assume independence between 
yields at different times so that P(zo, z1, ... , 
Z ... * , ZT) = P(zt)P(Z1) ... P (zT) 

For simplicity, the reader might care to deal 
with the easy case 

Prob {Z = X} = 1/2 
=Prob{Z=X-}, x> 1 

(9) 
In order that risk averters with concave utility 
should not shun this risk asset when maximiz- 
ing the expected value of their portfolio, X must 
be large enough so that the expected value of 
the risk asset exceeds that of the safe asset, i.e., 

- + A-1 > 1 + r, or 
2 2 

X > 1 + r + V2r + r2. 
Thus, for X = 1.4, the risk asset has a mean 
yield of 0.057, which is greater than a safe 
asset's certain yield of r = .04. 

At each instant of time, what will be the 
optimal fraction, Wt, that you should put in 

'See P. A. Samuelson [12], p. 273 for an exposition of 
discrete-time analogues to calculus-of-variations models. 
Note: here I assume that consumption, Ct, takes place at 
the beginning rather than at the end of the period. This 
change alters slightly the appearance of the equilibrium 
conditions, but not their substance. 
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the risky asset, with 1 - wt going into the safe 
asset? Once these optimal portfolio fractions 
are known, the constraint of (5) must be 
written 

Ct =[Wt - Wt+1]. 
c[(1-wt) (1 +r) + wtZt] 

(10) 

Now we use (10) instead of (4), and recogniz- 
ing the stochastic nature of our problem, 
specify that we maximize the expected value 
of total utility over time. This gives us the 
stochastic generalizations of (4) and (5) or 
(6) 

Max T 

{Ct, wt} E X (1 +p) -t U[Ct] (1 
t=O 

subject to 

Ct =[ Wt(1 + r) (- wt) + wtZt] 

WO given, WT+1 prescribed. 
If there is no bequeathing of wealth at death, 
presumably WT+1 = 0. Alternatively, we could 
replace a prescribed WT+1 by a final bequest 
function added to (11), of the form B(WT+1), 
and with WT+1 a free decision variable to be 
chosen so as to maximize (11) + B(WT+D). 
For the most part, I shall consider CT = WT 
and WT+1 = 0? 

In (11), E stands for the "expected value 
of," so that, for example, 

E Zt = fztdP(zt) 

In our simple case of (9), 

EZt = 2 A + 1 A-1. 
2 2 

Equation ( 11 ) is our basic stochastic program- 
ming problem that needs to be solved simul- 
taneously for optimal saving-consumption and 
portfolio-selection decisions over time. 

Before proceeding to solve this problem, ref- 
erence may be made to similar problems that 
seem to have been dealt with explicitly in the 
economics literature. First, there is the valu- 
able paper by Phelps on the Ramsey problem 
in which capital's yield is a prescribed random 
variable. This corresponds, in my notation, to 
the {wt} strategy being frozen at some frac- 
tional level, there being no portfolio selection 
problem. (My analysis could be amplified to 

consider Phelps' 5 wage income, and even in 
the stochastic form that he cites Martin Beck- 
mann as having analyzed.) More recently, 
Levhari and Srinivasan [4] have also treated 
the Phelps problem for T = oo by means of 
the Bellman functional equations of dynamic 
programming, and have indicated a proof that 
concavity of U is sufficient for a maximum. 
Then, there is Professor Mirrlees' important 
work on the Ramsey problem with Harrod- 
neutral technological change as a random vari- 
able.6 Our problems become equivalent if I 
replace W - Wt+1 [(1+r)(1-wt) + wtZtJ-1 
in (10) byAtf(Wt/At) - nWt - (Wt+- Wt) 
let technical change be governed by the prob- 
ability distribution 

Prob {At ? At-1Z} = P(Z); 
reinterpret my Wt to be Mirrlees' per capita 
capital, Kt/Lt, where Lt is growing at the nat- 
ural rate of growth n; and posit that Atf(Wt/ 
At) is a homogeneous first degree, concave, neo- 
classical production function in terms of cap- 
ital and efficiency-units of labor. 

It should be remarked that I am confirming 
myself here to regular interior maxima, and 
not going into the Kuhn-Tucker inequalities 
that easily handle boundary maxima. 

Solution of the Problem 

The meaning of our basic problem 
T 

JT(WO) = Max E X (1+P)-tU[Ct] (11) 
{ct,wt} t=O 

subject to Ct = Wt- Wt+1[(1-wt) (1+r) 
+ w,Zt]-I is not easy to grasp. I act now at 
t = 0 to select C0 and w0, knowing W0 but not 
yet knowing how Z0 will turn out. I must act 
now, knowing that one period later, knowledge 
of Z0's outcome will be known and that W1 will 
then be known. Depending upon knowledge of 
W1, a new decision will be made for C1 and 
w1. Now I can only guess what that decision 
will be. 

As so often is the case in dynamic program- 
ming, it helps to begin at the end of the plan- 
ning period. This brings us to the well-known 

'E. S. Phelps [8]. 
6 J. A. Mirrlees [6]. I have converted his treatment 

into a discrete-time version. Robert Merton's companion 
paper throws light on Mirrlees' Brownian-motion model 
for At. 
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one-period portfolio problem. In our terms, 
this becomes 

JI (WT-1) = Max U[CT-1] 

{CT-1jWT-1} 
+ E(l+p) 'U[ (WT-1 - CT-1) 

{(1-WT-1) (l+r) 
+ WT-1ZT-1} 4].* (12) 

Here the expected value operator E operates 
only on the random variable of the next period 
since current consumption CT-1 is known once 
we have made our decision. Writing the second 
term as EF(ZT), this becomes 

EF(ZT) = J F(ZT)dP(ZTjZT-1,ZT-22 * , Zo) 
0 

/F (ZT) dP (ZT), by our independence 

postulate. 
In the general case, at a later stage of decision 
making, say t = T- 1, knowledge will be avail- 
able of the outcomes of earlier random vari- 
ables, Zt-2, ... ; since these might be relevant 
to the distribution of subsequent random vari- 
ables, conditional probabilities of the form 
P(ZT-1IZT-2, .. .) are thus involved. How- 
ever, in cases like the present one, where in- 
dependence of distributions is posited, condi- 
tional probabilities can be dispensed within 
favor of simple distributions. 

Note that in (12) we have substituted for 
CT its value as given by the constraint in (11) 
or (10). 

To determine this optimum (CT-1, WT-1), 

we differentiate with respect to each separately, 
to get 

O = U' [CT-1] - (1+p)P EU' [CT] 

{(1-WT-1) (l+r) + WT-IZT-l} (12') 
O = EU' [CT] (WT-1 -CT_1) (ZT-1-1-r) 

- ,J'U' [ (WT-1 -CT-1) 

{(1-WT l(1+r) - WT-1ZT-1}] 

(WT-1-CT-1) (ZT-1 -r) dP (ZT-1) 
(12") 

Solving these simultaneously, we get our 
optimal decisions (C*T-1, W*T_1) as functions 
of initial wealth WT-1 alone. Note that if 
somehow C*T-1 were known, (12") would by 
itself be the familiar one-period portfolio op- 
timality condition, and could trivially be re- 
written to handle any number of alternative 
assets. 

Substituting (C*T-1, W*T_1) into the expres- 
sion to be maximized gives us J1(WT-1) ex- 
plicitly. From the equations in (12), we can, 
by standard calculus methods, relate the de- 
rivatives of U to those of J, namely, by the 
envelope relation 

JI'(WT-1) = U' [CT-1]. (13) 
Now that we know J1[WT_1], it is easy to 

determine optimal behavior one period earlier, 
namely by 

J2 (WT-2) = Max U[CT-2] 
{CT-21WT-2} 

+ E(1 +p) -1JI [ (WT-2-CT-2) 
{( 1-WT-2) (1 +r) + WT-2ZT-2}]. 

(14) 
Differentiating (14) just as we did (11) 

gives the following equations like those of (12) 
O = U' [CT-2] - (1+p) - EJ1' [WT-2] 

{ (1-WT-2) (I +r) + WT-2ZT-2} (15') 
0 = EJ1' [WT-1] (WT-2 - CT-2) (ZT-2 - 1-r) 

= J fJ1' [ (WT-2 -CT-2) { ( 1-WT-2) (1 +r) 

+ WT-2ZT-2}] (WT-2 -CT-2) (ZT-2 - 1-r) 
dP(ZT_2). 

(15") 
These equations, which could by (13) be re- 
lated to U'[CT-1], can be solved simultaneous- 
ly to determine optimal (C*T-2, W*T-2) and 
J2 (WT-2) . 

Continuing recursively in this way for T-3, 
T-4,...,2, 1, 0, we finally have our problem 
solved. The general recursive optimality equa- 
tions can be written as 

{ O = U'[Co] - (1 +p) -1 E'TT1 [Wo] 
{ (1-wo) (l+r) + woZo} 

O = EJI'T-l[Wl] (WO -CO) (ZO -1-r) 

O = U'[CT-] - (1+P) EJ'T-t[Wt] 
{ (I 1-wt-1) (I1 +r) + wt_IZt_I} ( 16') 

o = ETT-t [Wt-l -Ct-1) (Zt-1 r), 
(t =l,I...,IT-1I). (16tt) 

In (16'), of course, the proper substitutions 
must be made and the E operators must be 
over the proper probability distributions. Solv- 
ing (16") at any stage will give the optimal 
decision rules for consumption-saving and for 
portfolio selection, in the form 

C*t = f [Wt; Zt-l, ... , Zo] 
= fT-t[Wt] if the Z's are independently 

distributed 
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W*t = g[Wt; Zt_, ... *, Zo] 
= g-_t[Wt] if the Z's are independently 

distributed. 
Our problem is now solved for every case 

but the important case of infinite-time horizon. 
For well-behaved cases, one can simply let 
T -> oo in the above formulas. Or, as often 
happens, the infinite case may be the easiest of 
all to solve, since for it C*t = f(Wt), w*t = 

g(Wt), independently of time and both these 
unknown functions can be deduced as solutions 
to the following functional equations: 

0 = U' [f(W)] -(1+p) 

fJ'[ (W - f(W)) {(1+r) 

-g(W) (Z- 1 -r)}] [ (1+r) 
-g(W)(Z - 1 - r)]dP(Z) (17') 00 

0= fUu[{W - f(W)} 

{1 + r-g(W) (Z- 1 -r)}] 
[Z -1- r] d p (-i) ( 17"f) 

Equation (17'), by itself with g(W) pretended 
to be known, would be equivalent to equation 
(13) of Levhari and Srinivasan [4, p. f]. In 
deriving (17')-(17"), I have utilized the enve- 
lope relation of my (13), which is equivalent to 
Levhari and Srinivasan's equation (12) [4, 
p.5]. 

Bernoulli and Isoelastic Cases 

To apply our results, let us consider the in- 
teresting Bernoulli case where U = log C. This 
does not have the bounded utility that Arrow 
[1] and many writers have convinced them- 
selves is desirable for an axiom system. Since 
I do not believe that Karl Menger paradoxes 
of the generalized St. Petersburg type hold any 
terrors for the economist, I have no particular 
interest in boundedness of utility and consider 
log C to be interesting and admissible. For this 
case, we have, from (12), 

J1(W) = Max logC 
{C,w} 

+ E(l+p)-'log [(W - C) 
{ (l-w) (l+r) + wZ}] 

= Max log C + (I +p) log [W-C] 
{C} 

+ Max log [ (1-w) (1+r) 

{w} 
+ wZ]dP(Z) (18) 

Hence, equations (12) and (16')-(16") split 
into two independent parts and the Ramsey- 
Phelps saving problem becomes quite indepen- 
dent of the lifetime portfolio selection problem. 
Now we have 

0 = (1/C) - (1+p)-1 (W - C)-'or 
CT-1 = (l+p) (2+p) 'WT-1 (19) 

r00 
o = (Z- 1 r)-[(l w) (l+r) 

+ wZ] -1 dP(Z) or 
WT-1 = W* independently of WT-1. (19") 

These independence results, of the CT-1 and 
WT-1 decisions and of the dependence of WT_1 

on WT_1, hold for all U functions with iso- 
elastic marginal utility. I.e., (16') and (16") 
become decomposable conditions for all 

U(C) = 1/yCl, y < 1 (20) 

as well as for U(C) = log C, corresponding by 
L'Hopital's rule to y = 0. 

To see this, write (12) or (18) as 

J1 (W) = Max C + (1 +p) -1 (W-C)7 
{C, w} Y Y 

rx 
f[(1 -w)(1+r) + wZ]Zi dP(Z) 

= Max-+ (+p)-1 (w-CYx 
{C} 'Y 'Y 

Max [(1-w) (1+r) 
w? 

+ wZ] dp(Z). (21) 

Hence, (12") or (15") or (16") becomes 
rx 

[ (1 -w) (1+r) 

+ wZ]Y-l (Z-r- 1) dP (Z) = O, (22") 
which defines optimal w* and gives 

rx 
Max [(1 -w)(1+r) +wZ]y dP(Z) 
{w} 

co = f (1 -w*) (1 +r) + w*Z]'ydP (Z) 

= [1 + r*]Y,for short. 

Here, r* is the subjective or util-prob mean 
return of the portfolio, where diminishing mar- 
ginal utility has been taken into account.7 To 
get optimal consumption-saving, differentiate 
(21) to get the new form of (12'), (15'), or 
(16') 

See Samuelson and Merton for the util-prob concept 
[13]. 
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0 = CY-1 _ (1+p)-l (1+r*)y (W-C)'-1. 
(22') 

Solving, we have the consumption decision rule 

C*T_1 = T1 1 (23) 
+ aW 

where 
a, = [(1+r*)Y/(11+p)]/11tl. (24) 

Hence, by substitution, we find 
J1 (WT-1) = blW'YT-11/Y (25) 

where 
b, = aj'Y(1+aj)-Y 

+ (1+p)-l (1+r*)y (1+al)'-y (26) 
Thus, J,(.) is of the same elasticity form as 
U(.) was. Evaluating indeterminate forms for 
y = 0, we find J, to be of log form if U was. 

Now, by mathematical induction, it is easy 
to show that this isoelastic property must also 
hold for J2(WT-2), I3(WT-3), ..., since, 
whenever it holds for JI(WT_") it is deducible 
that it holds for Jn+1(WT -1). Hence, at 
every stage, solving the general equations (16') 
and (16"), they decompose into two parts in 
the case of isoelastic utility. Hence, 
Theorem: 
For isoelastic marginal utility functions, U'(C) 
= C-1, 'y < 1, the optimal portfolio decision 
is independent of wealth at each stage and in- 
dependent of all consumption-saving decisions, 
leading to a constant w*, the solution to 

r0 
o= f[(1-w)(l+r)+wZ]T-h(Z-1-r)dP(Z). 

Then optimal consumption decisions at each 
stage are, for a no-bequest model, of the form 

C*T-i = CiWT-i 

where one can deduce the recursion relations 
a, 

Cl = _.SA.l 
a1 = +W1 
a, [ (1+p)1( 1 +r*)'Y] 1/1_7 

rX 
(1+r*)y = J'[(1 w*)(1+r) 

+ w* Z]y dP (Z) 
alc_- 

c1s =- 
1+a1jc_j 

1+al+a 21+ ... +ail 
ail (a -1) 

=ai+1- 

1+i 

In the limiting case, as y -O 0 and we have 
Bernoulli's logarithmic function, a, = (1+p), 
independent of r*, and all saving propensities 
depend on subjective time preference p only, 
being independent of technological investment 
opportunities (except to the degree that Wt 
will itself definitely depend on those opportu- 
nities). 

We can interpret 1 +r* as kind of a "'risk- 
corrected" mean yield; and behavior of a long- 
lived man depends critically on whether 

(1+r*)y 
> 

( (l+p), corresponding to a, 
< 

1. 

(i) For (1+r*)'y = (1+p), one plans always to 
consume at a uniform rate, dividing current WT-i evenly 
by remaining life, 1/(1+i). If young enough, one saves 
on the average; in the familiar "hump saving" fashion, 
one dissaves later as the end comes sufficiently close 
into sight. 

(ii) For (1+r*)7 > (1+p), a, < 1, and investment 
opportunities are, so to speak, so tempting compared 
to psychological time preference that one consumes 
nothing at the beginning of a long-long life, i.e., rigor- 
ously 

Lim c4 = 0, a. < 1 
i -- oo 

and again hump saving must take place. For (1+r*)y 
> (1+p), the perpetual lifetime problem, with T = oo, 
is divergent and ill-defined, i.e., JI(W) -- oo as i-- oo. 
For Y - 0 and p > 0, this case cannot arise. 

(iii) For (1+r*)Y < (1+p), a,. > 1, consumption 
at very early ages drops only to a limiting positive 
fraction (rather than zero), namely 

Lim c4 = 1- l/a1< 1, a> 1. 
- 00 

Now whether there will be, on the average, initial hump 
saving depends upon the size of r* - c., or whether 

r*-- I- > O 

This ends the Theorem. Although many of 
the results depend upon the no-bequest as- 
sumption, WT+1 = 0, as Merton's companion 
paper shows (p. 247, this Review) we can easily 
generalize to the cases where a bequest func- 
tion BT(WT+l) is added to X O (1+p) tU(Ct). 
If BT is itself of isoelastic form, 

BT- bT(WT+1Y"/y, 

the algebra is little changed. Also, the same 
comparative statics put forward in Merton's 
continuous-time case will be applicable here, 
e.g., the Bernoulli y = 0 case is a watershed 
between cases where thrift is enhanced by risk- 
iness rather than reduced; etc. 
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Since proof of the theorem is straightfor- 
ward, I skip all details except to indicate how 
the recursion relations for ci and bi are derived, 
namely from the identities 

b+l1W7/y = J+i(W) 
= Max {CY/y 

C 
+ bj(1+r*)Y(1+p)-l(W-C)Y/y} 

{c'i+l + bi(l+r*)Y 
( 1+p) -1 ( 1-Ci+1)_1} WY/y 

and the optimality condition 
0 = CT-1_ b,(1+r*)Y(l+p)-l(W-C)7- 

= (c,+jW)8-1- bj(1+r*)7(1+p)1 
( 1-Cj+l ) T- W7-1j 

which defines cj+j in terms of bi. 
What if we relax the assumption of isoelastic 

marginal utility functions? Then WT_j be- 
comes a function of WT>j1l (and, of course, 
of r, p, and a functional of the probability dis- 
tribution P). Now the Phelps-Ramsey optimal 
stochastic saving decisions do interact with the 
optimal portfolio decisions, and these have to 
be arrived at by simultaneous solution of the 
nondecomposable equations (16') and (16"). 

What if we have more than one alternative 
asset to safe cash? Then merely interpret Zt 

as a (column) vector of returns (Z2,,Z3,, ..) 
on the respective risky assets; also interpret 
wt as a (row) vector (w2t,w3t, ...), interpret 
P(Z) as vector notation for 

Prob {Z2t _ Z2, Z3t ? Z3,... } 

= P(Z2 Z3,...) =P(Z), 
interpret all integrals of the form fG (Z) dP (Z) 
as multiple integrals fG (Z2,Z3, . ..) dP(Z2,Z3, 
...). Then (16") becomes a vector-set of 
equations, one for each component of the vector 
Zt, and these can be solved simultaneously for 
the unknown wt vector. 

If there are many consumption items, we 
can handle the general problem by giving a 
similar vector interpretation to Ct. 

Thus, the most general portfolio lifetime 
problem is handled by our equations or obvious 
extensions thereof. 

Conclusion 

We have now come full circle. Our model 
denies the validity of the concept of business- 
man's risk; for isoelastic marginal utilities, in 
your prime of life you have the same relative 

risk-tolerance as toward the end of life! The 
''chance to recoup" and tendency for the law 
of large numbers to operate in the case of re- 
peated investments is not relevant. (Note: 
if the elasticity of marginal utility, - U' (W) / 
WU"(W), rises empirically with wealth, and if 
the capital market is imperfect as far as lending 
and borrowing against future earnings is con- 
cerned, then it seems to me to be likely 
that a doctor of age 35-50 might rationally 
have his highest consumption then, and certain- 
ly show greatest risk tolerance then - in other 
words be open to a "businessman's risk." But 
not in the frictionless isoelastic model!) 

As usual, one expects w* and risk tolerance 
to be higher with algebraically large y. One 
expects C, to be higher late in life when r and 
r* is high relative to p. As in a one-period 
model, one expects any increase in "riskiness" 
of Zt, for the same mean, to decrease w*. One 
expects a similar increase in riskiness to lower 
or raise consumption depending upon whether 
marginal utility is greater or less than unity in 
its elasticity.8 

Our analysis enables us to dispel a fallacy 
that has been borrowed into portfolio theory 
from information theory of the Shannon type. 
Associated with independent discoveries by 
J. B. Williams [ 16], John Kelly [2 ], and H. A. 
Latane [3] is the notion that if one is invest- 
ing for many periods, the proper behavior is to 
maximize the geometric mean of return rather 
than the arithmetic mean. I believe this to be 
incorrect (except in the Bernoulli logarithmic 
case where it happens I to be correct for reasons 

'See Merton's cited companion paper in this issue, for 
explicit discussion of the comparative statical shifts of (16)'s 
C*t and W*t functions as the parameters (p, y, r, r*, and 
P(Z) or P(Z1,...) or B(WT) functions change. The same 
results hold in the discrete-and-continuous-time models. 

'See Latane [3, p. 151] for explicit recognition of this 
point. I find somewhat mystifying his footnote there which 
says, "As pointed out to me by Professor L. J. Savage (in 
correspondence), not only is the maximization of G [the 
geometric mean] the rule for maximum expected utility in 
connection with Bernoulli's function but (in so far as cer- 
tain approximations are permissible) this same rule is ap- 
proximately valid for all utility functions." [Latane, p. 151, 
n.13.] The geometric mean criterion is definitely too con- 
servative to maximize an isoelastic utility function cor- 
responding to positive y in my equation (20), and it is 
definitely too daring to maximize expected utility when 
,y < 0. Professor Savage has informed me recently that his 
1969 position differs from the view attributed to him in 
1959. 
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quite distinct from the Williams-Kelly-Latane 
reasoning). 

These writers must have in mind reasoning 
that goes something like the following: If one 
maximizes for a distant goal, investing and 
reinvesting (all one's proceeds) many times on 
the way, then the probability becomes great 
that with a portfolio that maximizes the geo- 
metric mean at each stage you will end up 
with a larger terminal wealth than with any 
other decision strategy. 

This is indeed a valid consequence of the 
central limit theorem as applied to the addi- 
tive logarithms of portfolio outcomes. (I.e., 
maximizing the geometric mean is the same 
thing as maximizing the arithmetic mean of 
the logarithm of outcome at each stage; if at 
each stage, we get a mean log of m** > m*, 
then after a large number of stages we will 
have m**T > > m*T, and the properly nor- 
malized probabilities will cluster around a 
higher value.) 

There is nothing wrong with the logical 
deduction from premise to theorem. But the 
implicit premise is faulty to begin with, as I 
have shown elsewhere in another connection 
[Samuelson, 10, p. 3]. It is a mistake to think 
that, just because a w** decision ends up with 
almost-certain probability to be better than a 
w* decision, this implies that w** must yield a 
better expected value of utility. Our analysis 
for marginal utility with elasticity differing 
from that of Bernoulli provides an effective 
counter example, if indeed a counter example 
is needed to refute a gratuitous assertion. 
Moreover, as I showed elsewhere, the ordering 
principle of selecting between two actions in 
terms of which has the greater probability of 
producing a higher result does not even possess 
the property of being transitive.'0 By that 
principle, we could have w*** better than w**, 
and w** better than w*, and also have w* 
better than w***. 
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